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Second–Year Electromagnetism Michaelmas Term 2015

Caroline Terquem

Problem set 4

Special relativity, Radiation, Transmission lines

Electromagnetism and special relativity

Problem 1: Electric field of a point charge moving with constant velocity

A point charge Q is at rest at the origin in an inertial frame (F ). At a point P with

cartesian coordinates (x, 0, z) the field measured in (F ) is E. We consider another inertial

frame (F ′) which moves in the positive x–direction with speed v with respect to (F ).

a) Find the electric field E′ produced at

P by this charge as measured in (F ′)

and in terms of the polar coordinates

(r′, θ′) in (F ′) centered on the charge.

Show that the field is parallel to the

unit vector r̂′. Find E′ in the limit

v � c.

b) We are going to show that Gauss’s law is satisfied in (F ′). Choose as Gauss’s surface

the surface of a sphere at rest in (F ′) and centered on the charge at some particular

time t′. Use spherical coordinates such that the polar angle θ′ is measured from the

x′–axis, so that there is azimuthal symmetry. Calculate the flux of E′ through the

surface of this sphere and show that it is equal to Q/ε0. We give:

ˆ
du

(a2 + u2)3/2
=

u

a2
√
a2 + u2

.
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c) The figure (from E. Purcell & D. Morin,

Electricity and Magnetism) shows a repre-

sentation of the electric field in (F ′) (the

dot in the centre represents the charge, and

the density of field lines indicates the in-

tensity of the field). Justify that the circu-

lation of the electric field along the closed

path ABCDA is non zero. Comment.

d) Calculate the magnetic field B′ of the charge Q as measured in (F ′). [Hint: Use the

fact that the magnetic field is zero in (F ).] Find B′ in the limit v � c. What is the

magnetic field of a charge moving at constant velocity v?

Problem 2: Interaction between a moving charge and other moving charges

In an inertial frame (F ), we consider a line of positive charges all moving to the right with

constant speed v. There is also a line of negative charges all moving to the left with the

same speed v. The total charges of the positive and negative lines are equal and opposite.

We view the lines as continuous distributions with linear charge densities +λ and −λ,

as measured in (F ). This is an ideal representation of a wire containing both ions and

electrons. At a distance d from the axis of the wire, there is a charge q which moves to

the right with speed u < v.

a) Calculate the net charge and the net current in the wire. Find the electric field E

and magnetic field B at the position of the charge, and the force f = q(E + u×B)

on q, as measured in (F ).

b) We now consider the inertial frame (F ′) which moves to the right at speed u. The

charge q is at rest in (F ′). Find the velocities v′+ and v′− of the positive and negative

lines in (F ′) and show that γ± ≡ 1/
√

1− v′2±/c2 = γ
(
1∓ uv/c2

)
/
√

1− u2/c2, where

γ ≡ 1/
√

1− v2/c2. Calculate the charge densities λ′± of the lines as measured in

(F ′) and the net charge λ′ = λ′+ + λ′− in terms of λ, u, v and c. Find the electric

field E′ at the position of the charge, and the force f ′ = qE′ on q, as measured in

(F ′). Compare f and f ′.
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Radiation

Problem 3: Radial oscillations of charges

An electric charge Q is distributed within a sphere of radius R in such a way that the

distribution is spherically symmetric for all times. The distribution undergoes radial os-

cillations. Find the electric and magnetic fields outside the sphere. Does the charge

distribution radiate? Comment.

Problem 4: Atom emitting light

Larmor’s formula can be used to obtain a simple estimate of the lifetime for free decay of

an excited atom. We consider a simple classical model of an atom, consisting of an electron

with charge q = −e and mass m which is bound to a heavy nucleus by a spring with spring

constant k = mω2
0. If the atom is given an excitation energy E0 at time t = 0, it oscillates

non–relativistically with weakly damped harmonic motion at frequency ω0. We neglect

the small change of frequency due to damping. Therefore, if we call x the direction along

the electron’s motion, the position of the electron relative to its equilibrium position can

be written as x(t) = Ae−t/τ cos(ω0t), where τ is a damping timescale.

a) Calculate the energy E(t) of the electron at time t in terms of A, ω0 and τ by

assuming ω0τ � 1.

b) Given that energy is lost through radiation, write dE/dt at time t in terms of A,

ω0, τ and other constants. Does E vary significantly during a period of oscillations?

Justify that when calculating dE/dt we can take the time–average over one period

of oscillation.

c) By comparing E and dE/dt obtained in questions (a) and (b), calculate the damp-

ing timescale τ . For an atom emitting visible light, we can take the wavelength to

be λ0 = 5000 Å. Give the numerical value of τ , and compare with the lifetime of

a typical excited state in a freely–decaying atom, which is ∼ 10−8 s. Justify the

assumption ω0τ � 1 used in the problem.
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Problem 5: Classical lifetime of a Bohr atom

In Bohr’s theory of hydrogen, the electron in its ground state moves in a circular orbit of

radius a0 = 0.53×10−10 m around the (fixed) proton. Since the electron is accelerating, a

classical analysis suggests that it will continuously radiate energy, and therefore the radius

of the orbit would shrink with time. In this problem, we calculate the time τ it would

take the electron to spiral in to the nucleus. We assume that τ is large compared to the

orbital period of the electron, so that the orbit remains nearly circular at all times (this

is called the adiabatic approximation).

a) Calculate the acceleration of the electron in terms of the radius r(t) of the orbit at

time t.

b) Calculate the energy E(t) of the electron in terms of r(t).

c) Given that energy is lost through radiation, calculate dE/dt in terms of r(t). Then,

using the result of question (b), write dr/dt in terms of r(t). Solve for r and calculate

τ . Check that τ is large compared to the orbital period of the electron, as we have

assumed in this problem. Comment on the value of τ .

Problem 6: Why is the sky blue?

We consider an electron in an atom of air in the atmosphere driven at steady state by the

electric field of the traveling electromagnetic wave produced by the Sun. The light emitted

by the Sun covers the visible range, but here we consider a single color, that is to say a

single Fourier component with frequency ω. We assume that the wave is polarized in the

x–direction, so that the electric field at the location of the atom is E = E0x̂ cos(ωt). We

suppose that the electron is bound to the nucleus of the atom with spring constant mω2
0,

and we neglect damping (which means we assume that the driving frequency ω is not too

close to the resonant frequency ω0).

a) We call x the position of the electron relative to its equilibrium position. Write the

equation of motion for the electron and calculate x(t) in steady state.

b) For visible light, we have ω0 � ω. Calculate the total power Prad radiated by the

electron. The wavelength of red and blue light is 6500 and 4500 Å, respectively.

Explain why the sky is blue, sunsets are red and the moon is red during total lunar

eclipse.
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Transmission lines

Problem 7: Practical types of transmission lines

Calculate the capacitance per unit length, the inductance per unit length and the speed at

which signals propagate for the following transmission lines. In each case, the conductors

are separated by a material of electric permittivity ε and magnetic permeability µ. The

figures show a cross section of the lines, which extend in the direction perpendicular to

the figure.

a) Coaxial cable: b) Strip line:

Problem 8: Short and open circuited transmission lines

Calculate the input impedance Z1 of a length l of a loss-free transmission line of charac-

teristic impedance Z0 terminated by an open circuit. Calculate the input impedance Z2

of the same transmission line terminated by a short circuit. Show that the lines can be

used to create an equivalent inductor or capacitor. Show that Z1Z2 = Z2
0 . Discuss the

applications of such transmission lines (also called stubs).

Problem 9: Power transmitted into a load

A wave travels along a loss–free transmission line of characteristic impedance Z1 which

is terminated by a load of impedance Z2. Show that the fraction of the incident power

time–averaged over a wave period transmitted into the load is t = 4Z1 Re(Z2)/ |Z1 + Z2|2.

Problem 10: Transmission lines in parallel

A transmission line with a characteristic impedance Z0 = 200 Ω is terminated by a resistor

R = 600 Ω. Calculate the input admittance Y (inverse of the impedance) of the line at

one–sixth of a wavelength from the end.

A short–circuited stub of line (with the same

characteristic impedance) is added in parallel

at this point. What should be its length in

order to cancel the reflected signal travelling

back towards the source? [Hint: Match the

admittances.]

5


