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Second–Year Electromagnetism Michaelmas Term 2015

Caroline Terquem

Problem set 3

Electromagnetic waves

Problem 1: Poynting vector and resistance heating

This problem is not about waves but is useful to understand how energy is transferred in

a circuit.

A cylindrical resistor with radius a, length L and resistance R is connected to a battery

which supplies a potential difference V . The resulting steady current I which flows along

the resistor is uniform through its cross-section.

a) Find the electric field E and magnetic field B on the surface of the resistor.

b) Calculate the Poynting vector S on the surface of the resistor. Find the power flowing

through the surface of the resistor. Compare with the rate at which work is done on

the charges in the resistor by the electromagnetic field.

c) We have found above that there is a flow of energy going into the resistor. This energy

has to come from outside the resistor, and therefore there has to be an electric field

outside giving an inward radial Poynting vector. Justify that this is the case.

d) The energy entering the resistor comes from the battery: energy flows along the wires

connecting the battery to the resistor. This requires a component of the electric

field perpendicular to the wires. Such a field is produced by charges that have to be

present on the surface of the wires for a steady current to flow. Assuming the charge

distribution sketched on the figure, draw the Poynting vector in the different parts

of the circuit to show how energy flows from the battery to the resistor. Comment

on where the energy flows. Is there any energy returning to the battery?

(adapted from Galili & Goihbarg, 2005, Energy transfer in electrical circuits: a

qualitative account, American Journal of Physics, 73, 141)
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Problem 2: Standing wave and radiation pressure

We consider an electromagnetic monochro-

matic plane wave which travels in vacuum and

hits at normal incidence the plane surface of

a perfect conductor which fills the half–space

z > 0. The wave is linearly polarized in the

x–direction and travels in the z–direction.

a) Find the transmitted and reflected waves in terms of the amplitude of the incident

wave.

b) Write the total electric field E and magnetic field B in the half–space z < 0. Find

the position (expressed in terms of the wavelength λ of the wave) of the nodal planes,

where E and B are zero, and justify why this is called a standing wave. Draw E as

a function of z at different times (expressed in terms of the period T of the wave).

c) Calculate the Poynting vector associated with the wave. Find its value in the nodal

planes and describe how the energy flows in space. Calculate the time–average of

the Poynting vector over a period at position z.

d) Calculate the time–average of the energy density over a period at position z.

e) Calculate the charge and current densities at the surface of the conductor. The

magnetic field due to an infinite current sheet with surface current K is µoK/2.

Find the magnetic field due to the current flowing at the surface of the conductor,

and compare with the reflected magnetic field calculated in question (a). Comment.

What is the source of the reflected electric field?

f) Calculate the time–average over a period of the force exerted by the electromagnetic

wave on the current at the surface of the conductor. Show that it is equivalent to

a radiation pressure P = ε0E
2. [Remember that the field generated by the surface

current itself does not exert a force on the surface.]

g) The result from the previous question indicates that the radiation pressure is equal

to the energy density of the electromagnetic wave. We are now going to show why

this is the case. We suppose that the conductor contracts by an average distance

dz under the action of the radiation pressure. Find the resulting increase of the

electromagnetic energy. Calculate the work done by the electromagnetic field on the

conductor to make it contract. What can you conclude? [Here we only consider the

time–average of the different quantities over a period.]
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Problem 3: Fresnel’s formulas

A monochromatic plane wave:

Ẽi = E0i ei(ki·r−ωt), B̃i =
1

c
k̂i×Ẽi,

is incident on the flat surface of a linear medium with

dielectric constant εr (and µ = µ0) at an angle θi to

the normal.

Here k̂i is the unit vector in the direction of propagation, and the tilde denotes complex

quantities. We choose the origin of time so that the amplitude of the wave, E0i, is real.

This gives rise to reflected and transmitted waves:

Ẽr = Ẽ0r ei(kr·r−ωt), B̃r =
1

c
k̂r×Ẽr, and Ẽt = Ẽ0t ei(kt·r−ωt), B̃t =

1

v
k̂t×Ẽt,

where v is the velocity of the wave in the dielectric.

a) Use the dispersion relation ω(k) and the boundary conditions at the interface to find

the angle of reflection θr (between kr and the z–axis) and the angle of transmission

(or refraction) θt (between kt and the z–axis) in terms of the angle of incidence θi

(Snell’s law). If the index of refraction n < 1, show that there is a critical angle θic

above which there is no transmitted wave (this is called total internal reflection).

b) We assume that the incident wave is linearly polarized with polarization normal to

the plane of incidence. We assume that the reflected and transmitted waves have

the same polarization (this can be shown by assuming a more general polarization

and using the boundary conditions). Use the boundary conditions to find Ẽ0r and

Ẽ0t as a function of E0i and θi (Fresnel’s formulas). Plot schematically the reflection

coefficient R =
∣∣∣Ẽ0r/E0i

∣∣∣2 as a function of θi for the cases n > 1 and n < 1.

c) Suppose now that the incident wave is linearly polarized with polarization parallel

to the plane of incidence. Again we assume that the reflected and transmitted waves

also have a linear polarization parallel to the plane of incidence. Use the boundary

conditions to find Ẽ0r and Ẽ0t as a function of E0i and θi (Fresnel’s formulas). Show

that there is no reflection at a certain value of θi, called Brewster’s angle. Plot

schematically R as a function of θi for the cases n > 1 and n < 1. What happens to

an unpolarized beam incident at Brewster’s angle?

d) At Brewster’s angle, show that θr + θt = 90◦. The incident wave induces oscillations

of the bound electrons at the surface of the dielectric. These electrons then act

as oscillating dipoles which are the source of the reflected and transmitted waves.

Given that dipoles do not radiate energy in the direction of their dipole moment,

can you explain why there is no reflection at Brewster’s angle?
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Problem 4: Waves in the ionosphere

The ionosphere is a region of the upper atmosphere which is ionized by solar (UV) ra-

diation. It may be simply described as a dilute gas of charged particles, composed of

electrons and ionized air (N2 and O2) molecules. The number density ne of free electrons

is maximum at about 200 to 400 km above the surface of the Earth. At higher altitudes, ne

decreases because the density of air molecules to be ionized decreases. At lower altitudes,

ne decreases because UV radiation from the sun has been absorbed in layers above.

a) We assume that the ionosphere can be modelled as a collisionless plasma. Write the

equation of motion for an electron assuming an external electric field and neglecting

the local field. Show that the dielectric constant is given by εr = 1 − ω2
p/ω

2, with

ω2
p = nee

2/(ε0m), where −e and m are the electron’s charge and mass, respectively.

Write the dispersion relation ω(k). Show that for ω < ωp, waves cannot propagate

in the plasma.

b) Suppose that waves are emitted at the surface of the Earth toward the ionosphere.

For waves with polarization both perpendicular and parallel to the plane of incidence,

show that for ω > ωp there is a range of angles of incidence for which reflection is

not total, but for larger angles there is a total reflection back toward the Earth. [Use

the results of Problem 3].

c) A radio amateur emits a wave with a wavelength of 21 m (corresponding to high

frequency or shortwave broadcast) in the early evening. This wave is received by

another radio amateur located 1000 km away, but not by other amateurs located

closer. Assuming that the wave is being reflected by the so–called F layer of the

ionosphere at a height of 300 km (the altitude at which reflection occurs can be

determined from the travel time of the signal), calculate the electron density ne.

Compare with the known maximum and minimum F layer densities of 2× 106 cm−3

in the daytime and (2–4)× 105 cm−3 at night.

d) The cutoff frequency ωp corresponding to ne ∼ 105–106 cm−3 is of a few 107 rad s−1.

FM radio and television signals have frequencies much larger than this value. What

happens to these signals when they hit the ionosphere? Why are AM signals, with

frequencies between 3 and 30 MHz, used for long distance (including intercontinental)

communication?

e) From the BBC website: AM reception can vary a great deal from day to night because

of differences in the atmosphere. You may get good, clear reception during the day,

but after sunset the signal may fade or become distorted. Signals travel further at

night, so you may get interference from other transmitters, and you may even hear

stations from outside the UK. Why do radio signals travel farther at night than in

the day?
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Problem 5: Anti–reflection coating

We consider three linear dielectric media with

flat and parallel boundaries with impedances Z1,

Z2 and Z3. A linearly polarized electromagnetic

monochromatic plane wave is normally incident

from medium (1), through a layer of medium (2)

of thickness L, into medium (3).

We consider L = λ2/4, where λ2 is the wavelength of the wave in medium (2).

a) Calculate the reflection coefficients R12 between media (1) and (2) and R23 between

media (2) and (3).

b) Calculate the total reflection coefficient R (that is to say the total intensity reflected

into medium (1)).

c) Show that it is possible to choose Z1, Z2 and Z3 such that there is no reflection

(R = 0) into medium (1). Compare R12 and R23 in that case. By assuming that the

total reflected wave in medium (1) is the superposition of the first wave reflected at

the first interface and the first wave reflected at the second interface and transmitted

back into medium (1), which is a good approximation when R12 and R23 are small

compared to unity, explain why we obtain R = 0.

Problem 6: Waves in a good conductor

We consider an ohmic conductor with conductivity σ, permittivity ε0 and permeability

µ0. We assume that the conductor is excellent, that is to say σ � ωε0.

a) Show that the conductor can be described as a dielectric with complex dielectric

constant ε̃r = 1 + iσ/(ωε0). An electromagnetic monochromatic plane wave propa-

gates through the conductor. Write the dispersion relation and find the wavenum-

ber in terms of the penetration depth δ =
√

2/(ωµ0σ). Compare the group and

phase velocities. Is dispersion normal or anomalous? Show that the impedance is

Z = (1− i)/(δσ).

b) Calculate the time–average over a period of the Poynting vector at a location z along

the direction of propagation of the wave. Calculate the time–average over a period

of the rate at which work is done on the charges contained in the volume delimited

by the surfaces at z = z1 and z = z2. Verify that it is equal to the time–average

over a period of the flux of the Poynting vector into the volume.

c) Calculate the time–average over a period of the energy density. Is the energy carried

mainly by the electric field or by the magnetic field? Calculate the velocity at which

energy is transported. Compare with the group velocity. Comment.
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Problem 7: Dielectric losses

In general, the response of dielectric materials to a varying electric field is described by

a complex dielectric constant, which is associated with energy losses. In this problem, we

are going to derive an energy equation for the wave and quantify the losses.

a) Write Maxwell’s equations for a dielectric with a complex dielectric constant and no

conduction current nor free charges. First write the equations using complex nota-

tions, and then separate all the quantities into real and imaginary parts. Remember

that the physical fields are the real part of the complex quantities. By taking the

dot product of E with the equation giving ∇×B, derive an energy equation for the

wave (follow the same procedure as in sections 4.3.1 and 4.3.2 of the Lecture Notes).

Give the expression for the rate at which energy is dissipated per unit volume in the

dielectric.

b) The time–average over a period of the Poynting vector in a dielectric with complex

dielectric constant is:

〈S〉 =

〈
E×B

µ0

〉
= ẑcn′

ε0E
2
0

2
e−2k

′′z,

where ẑ is the direction of propagation, E0e
−k′′z is the amplitude of the electric field,

n′ is the real part of the complex index of refraction and k′′ is the imaginary part of

the complex wavenumber (see section 5.6.4 of the Lecture Notes). Verify that the

flux of 〈S〉 into a volume delimited by the surfaces at z = z1 and z = z2 is equal

to the time–average over a period of the rate at which energy is dissipated in the

volume.

c) In Maxwell’s equations (in complex notations), we now add a conduction current

that obeys Ohm’s law. Show that the imaginary part of the dielectric constant can

be incorporated into an effective conductivity and recover the rate of energy loss in

the dielectric by drawing an analogy with ohmic dissipation.
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