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Second–Year Electromagnetism Michaelmas Term 2015

Caroline Terquem

Problem set 2

Electric and magnetic fields in matter

Some of the problems below are taken from:

Introduction to Electrodynamics, David J. Griffiths, 4th Edition

Electric fields in matter

Problem 1: Capacitance and dielectrics

We consider a parallel plate capacitor consisting of two metal surfaces of area A separated

by a distance d. We assume d � A1/2, so that edge effects can be neglected and the

electric field can be considered to be uniform between the plates.

a) The capacitor is connected to a battery so that a charge +Q0 is brought from one

plate to the other. Using Gauss’s law, calculate the electric field E0 between the

plates. Find the potential difference ∆V0 between the plates and the capacitance

C0. Calculate the potential energy U0 stored in the capacitor.

b) We now insert a linear dielectric material between the plates while the capacitor

remains connected to the battery, which supplies the potential difference ∆V0. Ex-

perimentally, it is found that the charge Q on the plates is increased. Explain why.

By representing the system as the superposition of a vacuum capacitor and a polar-

ized dielectric slab, calculate the total electric field E in the capacitor in terms of Q

and the polarization P . By substituting P = ε0χeE, find the relation between the

displacement vector D and Q. Calculate Q in terms of Q0 and the capacitance C in

terms of C0. Calculate the change in the stored potential energy of the capacitor in

terms of U0.

c) We now come back to question (a) and disconnect the battery before inserting a

dielectric material between the capacitor plates. Experimentally, it is found that the

potential difference ∆V between the plates decreases. Explain why. Calculate the

capacitance C in terms of C0 and the change in the stored potential energy of the

capacitor in terms of U0.
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Problem 2: Capacitor half–filled with a dielectric

We insert a slab of linear dielectric material of dielectric

constant εr and thickness d next to the positive plate in a

parallel plate capacitor. The distance between the plates

is 2d, their area is A and they carry a (free) charge density

±σ .

a) Find the electric displacement vector D, the electric field E and the polarization P

in each region.

b) Find the potential difference between the plates and the capacitance C. Show that

the system can be regarded as two capacitors connected in series.

c) Find the location and amount of all bound charge. Using the distribution of free

and bound charges, recalculate the electric field E in each region.

Problem 3: Force on a dielectric

We insert a portion of a slab of linear dielectric material of dielectric constant εr and

thickness d on the left hand side of a parallel plate capacitor consisting of two conducting

plates of length L, width w and thickness d.

a) We connect the capacitor to a battery to charge the plates, and then disconnect

the battery. The total charge on each plate then remains constant equal to ±Q,

corresponding to surface charge densities ±σ′ and ±σ′′ on the left and right hand

sides, respectively. Using Gauss’s law, write the electric fields E′ and E′′ on the left

and right hand sides in terms of σ′ and σ′′. Find the relation between σ′ and σ′′.

Using the fact that Q is constant, write σ′′ in terms of x and the different constants.

Find the potential difference between the plates, and then the stored potential energy

U of the system, in terms of x. Write the relation between the change in energy,

dU , when the dielectric is pulled out a distance dx, and the electric force F exerted

by the plates on the dielectric. Calculate F in terms of x. Does this force pull the

dielectric into the capacitor or push it out?
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b) We now repeat the experiment but leave the capacitor connected to the battery,

which supplies the potential difference ∆V . Calculate U in terms of x and the

different constants. Write the relation between dU and F when the dielectric is

pulled out a distance dx. Make sure to include all contributions to the work done in

the system. Calculate F in terms of x and show that it is the same as in question

(a).

c) The result obtained above can be verified experimentally. However, we have assumed

in our calculation that the electric field was uniform between the plates and zero

outside. If that were the case in reality, would there be a force on the dielectric?

Where does this force come from, and how is it possible that we obtain the right

answer given the simplified model we have used?

Problem 4: Sphere with a frozen–in polarization

A sphere of radius R made of a dielectric material carries a frozen–in polarization P(r) =

kr, where k is a constant and r is the position vector measured from the centre of the

sphere. There are no free charges anywhere.

a) Calculate the bound charges.

b) Using Gauss’s law, find the electric field E inside and outside the sphere.

c) Using the expression of E and P, find the electric displacement vector D inside and

outside the sphere. Check that it satisfies Gauss’s law. Is the dielectric linear?

Problem 5: Electric field within a cavity inside a dielectric

The electric field inside a large piece of dielectric is E0 and the polarization is P, so that

the displacement vector is D = ε0E0 + P. A cavity is hollowed out of the material. It is

small enough that the field and the polarization can be taken as uniform within it. We

also assume that the polarization in the dielectric is frozen–in, so that it does not change

when the cavity is hollowed out. Calculate, in the cavity, the field in terms of E0 and P

and the displacement in terms of D0 and P in the following cases:

a) The cavity is a small sphere [Hint: Use the superposition principle and, to calculate

the electric field inside a uniformly polarized sphere, use the results of Problem 5 in

Problem set 1],

b) The cavity is shaped like a long thin needle parallel to P,

c) The cavity is a thin, circular wafer perpendicular to the polarization.
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Magnetic fields in matter

Problem 6: Cylinder with a frozen–in magnetization

An infinitely long cylinder of radius R made of a magnetic material carries a frozen–in

magnetization M = krẑ, where r is the distance from the axis of the cylinder, ẑ is the

unit vector along the axis and k is a constant. There is no free current anywhere. Find

the magnetic field B inside and outside the cylinder by two different methods:

a) Locate all the bound currents and calculate the field they produce,

b) Use Ampère’s law for H and the relationship between B, H and M to derive B.

Problem 7: Magnetic field in a coaxial cable

A long coaxial cable of inner radius a and outer radius b is

filled with an insulating material of magnetic susceptibility

χm. A current I flows down the inner conductor and returns

along the outer one, uniformly distributed over the surfaces.

Find the magnetic field B in the magnetic material between

the conductors. As a check, calculate the magnetization M

and the bound currents, and confirm that, together with the

free currents, they generate the correct field.

Problem 8: Air gap in an inductor

We consider a toroidal core made of an iron alloy

with cross sectional area A and radius R� A1/2.

We make an inductor from the core by wrapping

around it N turns of a wire carrying a current I,

to use it as an energy storage device.

We increase the current from 0 until the material saturates, which happens when the

magnetic field B inside it reaches the value Bsat. Before saturation is reached, the material

can be regarded as being linear with relative permeability µr.

a) Calculate the magnetic field B in the core and the inductance L. Find the maximum

current I1 that the inductor can carry before the core saturates. Calculate the

magnetic energy W1 that is stored in the inductor when the current reaches the

value I1. If I is increased beyond I1, how does the inductance vary?
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b) To increase the energy that can be stored in

the inductor, we have to find a way of increas-

ing the saturation current while keeping L con-

stant. This can be done by introducing an air

gap of width w into the core. We take w � R,

so that we can neglect magnetic fringing, that

is to say the bulging out of the magnetic field

lines as they enter air from the magnetic ma-

terial.

Calculate the magnetic field B in the core and the number of turns of wire we now

have to wrap around the core to keep L constant. Find the maximum current I2 this

second inductor can carry before the core saturates and compare it with I1. Calculate

the energy W2 stored in the magnetic field at the point of saturation and compare

it with W1. Compare the energy stored in the magnetic material with that stored

in the air gap. For numerical applications, use R = 10 cm, w = 3 mm and µr = 1500.

c) Some of the energy stored in the

inductor can be recovered by

decreasing the current back to

0. The figure shows the B −H

curves (hysteresis loops) mea-

sured on a toroidal core without

and with gap (the straight lines

inside the loops are the magne-

tization curves).

Show on these curves how much energy is released per unit volume by the magnetic

material in the core after the current is returned to 0. Comment.

d) Explain what would be the advantages of using iron, and especially soft iron, to

make magnetic cores. Iron, however, has a major disadvantage when the inductor is

used with alternating currents. Can you think of what it is?
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