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Second–Year Electromagnetism Michaelmas Term 2015

Caroline Terquem

Problem set 1

Potentials

Problem 1: Magnetic vector potential

We consider a finite segment of straight wire of length 2L carrying a steady current I.

a) Calculate the magnetic vector potential A at a point P a distance r from the wire

along the perpendicular bisector. We give:

ˆ
dz√
z2 + a2

= ln
(
z +

√
z2 + a2

)
.

b) Using B = ∇×A and assuming L � r, calculate the magnetic field at P . Check

that your answer is consistent with what is expected from Ampère’s law.

Problem 2: Expansion in Legendre polynomials

This problem is useful to understand that a multipole expansion is nothing more than a

development in Taylor series of 1/|r′ − r|.

The scalar potential V created at a point M by a

localised charge distribution is:

V (r) =
1

4πε0

˚
V

ρ(r′)

|r′ − r|
dτ ′,

where the integration is over the volume V of the dis-

tribution and the position vectors r and r′ are mea-

sured from an origin O chosen arbitrarily.

Assuming r′ � r, expand 1/|r′− r| in Taylor series up to 3rd order in r′/r. Use the result

to give an expression for V in term of Legendre polynomials including the terms up to

l = 3.

We give: P0(x) = 1, P1(x) = x, P2(x) = 1
2(3x2 − 1), P3(x) = 1

2(5x3 − 3x).
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Problem 3: Dipole

a) Show that the energy of a physical dipole p in an electric field E (not necessarily

uniform) is given by U = −p ·E.

b) We consider two dipoles p1 and p2 and note r the position vector of p2 measured

from p1. Show that the interaction energy of the two dipoles is:

Uint =
1

4πε0r3
[p1 · p2 − 3 (p1 · r̂) (p2 · r̂)] ,

where r̂ = r/r.

c) Draw graphs showing how Uint depends upon the relative orientation of the dipoles

in the following cases: (i) p1 is parallel to r, (ii) p1 is perpendicular to r.

Problem 4: Quadrupole

A system of three charges, aligned along the z–axis,

consists of a charge −2q at the origin O and two +q

charges at z = −a and z = a. We note (r, θ, ϕ) the

spherical coordinates.

a) Find the potential at r � a using the multipole expansion with origin at O. Justify

why this system of charges is called a quadrupole.

We give: P0(x) = 1, P1(x) = x, P2(x) = 1
2(3x2 − 1).

b) Show that there is not translational force or couple on the quadrupole in a uniform

electric field.

c) We consider a point charge Q placed at a point P a distance r � a away from the

quadrupole. Show that the torque about P on the quadrupole due to the charge is

Γ = 3Qqa2 sin 2θ/(4πε0r
3) and find its direction.

d) Find the energy of the quadrupole in the potential of the chargeQ. In which direction

does the quadrupole rotate under the effect of the torque?

Problem 5: Electric field due to a sphere with surface charge density ∝ cos θ

We consider a sphere of radius R and a spherical coordinate system (r, θ, ϕ) with origin

at the centre of the sphere. The surface of the sphere carries a charge density σ = k cos θ.
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a) Calculate the potential V using the fact that it satisfies Laplace’s equation both

inside and outside the sphere. Hint: write the solution of the equation in term of

Legendre polynomials and choose V = 0 at infinity.

b) Find the electric field E produced by the sphere.

c) Calculate the electric dipole moment p of the charge distribution. Check that the

electric field outside the sphere calculated in the previous question is that due to the

dipole moment p. What can you conclude about the higher multipoles? Express the

field inside the sphere as a function of the polarization of the sphere, which is the

dipole moment per unit volume.

d) A surface charge density ∝ cos θ can be obtained by superimposing two solid spheres

with same radius R, opposite charges Q and −Q uniformly distributed over their

volume, and centres slightly apart (separation d� R), as shown on the figure.

From a point outside the spheres, the situation is the

same as if the charges were at the centre of the spheres.

Find the relation between Q, d and p for the electric field

outside the spheres to be the same as in the previous ques-

tion. Using Gauss’s theorem to obtain the contribution

from each sphere, calculate the field in the region where

the spheres overlap and show that it is the same as in the

previous question.

Problem 6: Potential around a metal sphere in a uniform electric field

A metal sphere of radius R with no net charge is placed in a uniform electric field E = E0ẑ,

where ẑ is a unit vector.

a) Explain qualitatively how the field modifies the charge distribution in the sphere

and how this, in turn, affects the electric field.

b) Calculate the electric potential V outside the sphere using the fact that it satisfies

Laplace’s equation. Hint: write the solution of the equation in term of Legendre

polynomials and choose V = 0 at the surface of the sphere.

c) Using the boundary condition on the electric field, calculate the charge density σ at

the surface of the sphere.

d) Using the results from Problem 5, question b, give an expression for the electric field

produced by σ. Find the total field inside the sphere. Comment.
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Problem 7: Magnetic field due to a spinning sphere

We consider a sphere of radius R which carries a uniform surface charge density σ and

spins with angular velocity ω around a diameter. We use spherical coordinates (r, θ, ϕ)

with origin at the centre of the sphere and the z–axis along the rotation axis.

a) Find the surface current density K(r) as a function of θ. Hint: Consider a ring with

a small thickness at the surface of the sphere and perpendicular to the rotation axis.

b) Justify that the magnetic field produced by the surface current can be written under

the form B = ∇Ψ, where Ψ is a scalar function. Show that Ψ satisfies Laplace’s

equation inside and outside the sphere. Write the boundary conditions on Ψ.

c) Write Ψ in term of Legendre polynomials. Show that the l = 1 term in the expan-

sion, with appropriate coefficients, satisfies Laplace’s equation inside and outside the

sphere with the boundary conditions given above. Justify that this is the solution.

d) Find the magnetic field B produced by the sphere.

e) Consider a ring with a small thickness at the surface of the sphere and perpendicular

to the rotation axis. Write the magnetic dipole moment of this ring. Find the total

magnetic dipole moment m of the sphere.

f) Check that the magnetic field outside the sphere calculated in question d is that

due to the dipole moment m. What can you conclude about the higher multipoles?

Express the field inside the sphere as a function of the magnetization of the sphere,

which is the dipole moment per unit volume.

Problem 8: Separation of variables in cylindrical coordinates

a) Solve Laplace’s equation by separation of variables in cylindrical coordinates, as-

suming there is no dependence on z.

b) Consider an infinitely long straight wire along the z–axis which carries a uniform

line charge λ. Calculate the electric field using Gauss’s theorem. Find the potential

and check that it is a solution of Laplace’s equation found in question a.

c) Consider an infinitely long metal pipe of radius R placed at right angle to a uniform

electric field E0. Using the result from question a and appropriate boundary condi-

tions, find the potential outside the pipe. Calculate the charge density induced on

the pipe.
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