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Quantum Mechanics: Problems

Problem sheet 1: (Michaelmas Term, Weeks 5–6)

� Matter waves

1.1 Find the kinetic energy in eV (electron volts) of a neutron, an electron and an electro-
magnetic wave, each of wavelength 0.1 nm. (For the electron and the neutron, first try
a non-relativistic formula for the kinetic energy, and then justify afterwards why it was
reasonable to do that.)

1.2 For the electron and the neutron in the previous problem, estimate in each case the
approximate wavelength below which the non-relativistic formula would fail to give a
good answer (and make a reasonable choice for what ‘good’ means here).

1.3 A beam of neutrons with energy E runs horizontally into a crystal. The crystal transmits
half the neutrons and deflects the other half vertically upwards. After climbing to
height H these neutrons are deflected through 90◦ onto a horizontal path parallel to the
originally transmitted beam. The two horizontal beams now move a distance L down
the laboratory, one distance H above the other. After going distance L, the lower beam
is deflected vertically upwards and is finally deflected into the path of the upper beam
such that the two beams are co-spatial as they enter the detector. Given that particles
in both the lower and upper beams are in states of well-defined momentum, show that
the wavenumbers k, k′ of the lower and upper beams are related by

k′ ' k

(
1− mngH

2E

)
.

In an actual experiment (R. Colella et al., Phys. Rev. Lett., 34, 1472, 1975) E = 0.042 eV
and LH ∼ 10−3 m2 (the actual geometry was slightly different). Determine the phase
difference between the two beams at the detector. Sketch the intensity in the detector
as a function of H.

� Wave mechanics

1.4 Particles move in the potential

V (x) =

{
0 for x < 0

V0 for x > 0
.

Particles of mass m and energy E > V0 are incident from x = −∞. Show that the
probability that a particle is reflected is(

k −K
k +K

)2

,
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where k ≡
√

2mE/~ andK ≡
√

2m(E − V0)/~. Show directly from the time-independent
Schrödinger equation that the probability of transmission is

4kK

(k +K)2

and check that the flux of particles moving away from the origin is equal to the incident
particle flux.

1.5 Show that the energies of bound, odd-parity stationary states of the square potential
well

V (x) =

{
0 for |x| < a

V0 > 0 otherwise
,

are governed by

cot(ka) = −

√
W 2

(ka)2
− 1 where W ≡

√
2mV0a2

~2
and k2 = 2mE/~2.

Show that for a bound odd-parity state to exist, we require W > π/2.

1.6 A free particle of energy E approaches a square, one-dimensional potential well of depth
V0 and width 2a. Show that the probability of being reflected by the well vanishes
when Ka = nπ/2, where n is an integer and K = (2m(E + V0)/~2)1/2. Explain this
phenomenon in physical terms.

1.7 A particle of energy E approaches from x < 0 a barrier in which the potential energy is
V (x) = Vδδ(x). Show that the probability of its passing the barrier is

Ptun =
1

1 + (K/2k)2
where k =

√
2mE

~2
, K =

2mVδ
~2

.

1.8 Given that the wavefunction is ψ = Aei(kz−ωt)+Be−i(kz+ωt), where A and B are constants,
show that the probability current density is

J = v
(
|A|2 − |B|2

)
ẑ,

where v = ~k/m. Interpret the result physically.

1.9 Let ψ(x, t) be the correctly normalised wavefunction of a particle of mass m and potential
energy V (x). Write down expressions for the expectation values of (a) x̂; (b) x̂2; (c) the
momentum p̂x; (d) p̂2x; (e) the energy.

What is the probability that the particle will be found in the interval (x1, x2)?

3



Quantum Mechanics: Problems

Problem sheet 2: (Michaelmas Term, Weeks 7–8)

� Dirac notation

2.1 How is a wavefunction ψ(x) written in Dirac’s notation? What’s the physical significance
of the complex number ψ(x) for given x?

2.2 Given that |ψ〉 = eiπ/5|a〉+ eiπ/4|b〉, express 〈ψ| as a linear combination of 〈a| and 〈b|.

2.3 An electron can be in one of two potential wells that are so close that it can ‘tunnel’
from one to the other. Its state vector can be written

|ψ〉 = a|A〉+ b|B〉,

where |A〉 is the state of being in the first well and |B〉 is the state of being in the second
well and all kets are correctly normalised. What is the probability of finding the particle
in the first well given that: (a) a = i/2; (b) b = eiπ; (c) b = 1

3
+ i/
√

2?

2.4 Let Q̂ be the operator of an observable and let |ψ〉 be the state of our system.

(a) What are the physical interpretations of 〈ψ|Q̂|ψ〉 and |〈qn|ψ〉|2, where |qn〉 is the nth

eigenket of the observable Q and qn is the corresponding eigenvalue?

(b) What is the operator
∑

n |qn〉〈qn|, where the sum is over all eigenkets of Q̂? What
is the operator

∑
n qn|qn〉〈qn|?

(c) If un(x) is the wavefunction of the state |qn〉, write down an integral that evaluates
to 〈qn|ψ〉.

� Time dependence and the Schrödinger equation

2.5 Write down the time-independent (TISE) and the time-dependent (TDSE) Schrödinger
equations. Is it necessary for the wavefunction of a system to satisfy the TDSE? Under
what circumstances does the wavefunction of a system satisfy the TISE?

2.6 Why is the TDSE first-order in time, rather than second-order like Newton’s equations
of motion?

2.7 A particle is confined in a potential well such that its allowed energies are En = n2E ,
where n = 1, 2, . . . is an integer and E a positive constant. The corresponding energy
eigenstates are |1〉, |2〉, . . . , |n〉, . . . At t = 0 the particle is in the state

|ψ(0)〉 = 0.2|1〉+ 0.3|2〉+ 0.4|3〉+ 0.843|4〉.

(a) What is the probability, if the energy is measured at t = 0, of finding a number
smaller than 6E?
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(b) What is the mean value and what is the rms deviation of the energy of the particle
in the state |ψ(0)〉?
(c) Calculate the state vector |ψ〉 at time t. Do the results found in (a) and (b) for time
t remain valid for arbitrary time t?

(d) When the energy is measured it turns out to be 16E . After the measurement, what
is the state of the system? What result is obtained if the energy is measured again?

2.8 A particle moves in the potential V (x) and is known to have energy En. (a) Can it have
well-defined momentum for some particular V (x)? (b) Can the particle simultaneously
have well-defined energy and position?

� Hermitian operators

2.9 Which of the following operators are Hermitian, given that Â and B̂ are Hermitian:

Â+ B̂; cÂ; ÂB̂; ÂB̂ + B̂Â.

Show that in one dimension, for functions which tend to zero as |x| → ∞, the operator
∂/∂x is not Hermitian, but −i~∂/∂x is. Is ∂2/∂x2 Hermitian?

2.10 Given that Â and B̂ are Hermitian operators, show that i[Â, B̂] is a Hermitian operator.

2.11 Given that for any two operators (ÂB̂)† = B̂†Â†, show that

(ÂB̂ĈD̂)† = D̂†Ĉ†B̂†Â†.

� Commutators

2.12 Show that if there is a complete set of mutual eigenkets of the Hermitian operators Â
and B̂, then [Â, B̂] = 0. Explain the physical significance of this result.

2.13 Does it always follow that if a system is an eigenstate of Â and [Â, B̂] = 0 then the
system will be in a eigenstate of B̂? If not, give a counterexample.

2.14 Show that

(a) [ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

(b) [ÂB̂Ĉ, D̂] = ÂB̂[Ĉ, D̂] + Â[B̂, D̂]Ĉ + [Â, D̂]B̂Ĉ. Explain the similarity with the rule
for differentiating a product.

(c) [x̂n, p̂] = i~nx̂n−1

(d) [f(x̂), p̂] = i~df
dx

for any function f(x).
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Quantum Mechanics: Problems

Problem sheet 3: (Christmas vacation)

� The simple harmonic oscillator

3.1 After choosing units in which everything, including ~ = 1, the Hamiltonian of a harmonic
oscillator may be written Ĥ = 1

2
(p̂2 + x̂2), where [x̂, p̂] = i. Show that if |ψ〉 is a ket that

satisfies H|ψ〉 = E|ψ〉, then

1

2
(p̂2 + x̂2)(x̂∓ ip̂)|ψ〉 = (E ± 1)(x̂∓ ip̂)|ψ〉.

Explain how this algebra enables one to determine the energy eigenvalues of a harmonic
oscillator.

3.2 Given that â|n〉 = α|n− 1〉 and En = (n+ 1
2
)~ω, where the annihilation operator of the

harmonic oscillator is

â ≡ mωx̂+ ip̂√
2m~ω

,

show that α =
√
n. Hint: consider |â|n〉|2.

3.3 The pendulum of a grandfather clock has a period of 1 s and makes excursions of 3 cm
either side of dead centre. Given that the bob weighs 0.2 kg, around what value of n
would you expect its non-negligible quantum amplitudes to cluster?

3.4 Show that the minimum value of E(p, x) ≡ p2/2m + 1
2
mω2x2 with respect to the real

numbers p, x when they are constrained to satisfy xp = 1
2
~, is 1

2
~ω. Explain the physical

significance of this result.

3.5 How many nodes are there in the wavefunction 〈x|n〉 of the nth excited state of a
harmonic oscillator?

3.6 Show that for a harmonic oscillator that wavefunction of the second excited state is
〈x|2〉 = constant × (x2/`2 − 1)e−x

2/4`2 , where ` ≡
√
~/2mω and find the normalising

constant.

3.7 Use

x̂ =

√
~

2mω
(â+ â†) = `(â+ â†)

to show for a harmonic oscillator that in the energy representation the operator x̂ is

x̂jk = `



0
√

1 0 0 . . .√
1 0

√
2 0

0
√

2 0
√

3 · · ·√
3 . . .

. . . . . . . . . . . .
. . . 0

√
n− 1 . . .√

n− 1 0
√
n√

n 0
√
n+ 1 · · ·√

n+ 1 0
· · · · · · · · · · · · · · ·


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Calculate the same entries for the matrix p̂jk.

3.8 At t = 0 the state of a harmonic oscillator of mass m and frequency ω is

|ψ〉 =
1

2
|N − 1〉+

1√
2
|N〉+

1

2
|N + 1〉.

Calculate the expectation value of x as a function of time and interpret your result
physically in as much detail as you can.

� More problems on basic quantum mechanics

3.9 An electron can ‘tunnel’ between potential wells that form a chain, so its state vector
can be written

|ψ〉 =
∞∑

n=−∞

an|n〉,

where |n〉 is the state of being in the nth well, where n increases from left to right. Let

an =
1√
2

(
−i

3

)|n|/2
einπ.

(a) What is the probability of finding the electron in the nth well?

(b) What is the probability of finding the electron in well 0 or anywhere to the right of
it?

3.10 A three-state system has a complete orthonormal set of states |1〉, |2〉, |3〉. With respect
to this basis the operators Ĥ and B̂ have matrices

Ĥ = ~ω

1 0 0
0 −1 0
0 0 −1

 B̂ = b

1 0 0
0 0 1
0 1 0

 ,

where ω and b are real constants.

(a) Are Ĥ and B̂ Hermitian?

(b) Write down the eigenvalues of Ĥ and find the eigenvalues of B̂. Solve for the eigen-
vectors of both Ĥ and B̂. Explain why neither matrix uniquely specifies its eigenvectors.

(c) Show that Ĥ and B̂ commute. Give a basis of eigenvectors common to Ĥ and B̂.

3.11 A system has a time-independent Hamiltonian that has spectrum {En}. Prove that
the probability Pk that a measurement of energy will yield the value Ek is is time-
independent. Hint: you can do this either from Ehrenfest’s theorem, or by differentiating
〈Ek, t|ψ〉 w.r.t. t and using the TDSE.

3.12 Let ψ(x) be a properly normalised wavefunction and Q̂ an operator on wavefunctions.
Let {qr} be the spectrum of Q̂ and {ur(x)} be the corresponding correctly normalised
eigenfunctions. Write down an expression for the probability that a measurement of Q
will yield the value qr. Show that

∑
r P (qr|ψ) = 1. Show further that the expectation

of Q is 〈Q〉 ≡
∫∞
−∞ ψ

∗Q̂ψ dx.
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3.13 (a) Find the allowed energy values En and the associated normalized eigenfunctions
φn(x) for a particle of mass m confined by infinitely high potential barriers to the region
0 ≤ x ≤ a.

(b) For a particle with energy En = ~2n2π2/2ma2 calculate 〈x〉.
(c) Without working out any integrals, show that

〈(x− 〈x〉)2〉 = 〈x2〉 − a2

4
.

Hence find 〈(x− 〈x〉)2〉 using the result that
∫ a
0
x2 sin2(nπx/a) dx = a3(1/6− 1/4n2π2).

(d) A classical analogue of this problem is that of a particle bouncing back and forth
between two perfectly elastic walls, with uniform velocity between bounces. Calculate
the classical average values 〈x〉c and 〈(x − 〈x〉)2〉c, and show that for high values of n
the quantum and classical results tend to each other.

3.14 A Fermi oscillator has Hamiltonian Ĥ = f̂ †f̂ , where f̂ is an operator that satisfies

f̂ 2 = 0, f̂ f̂ † + f̂ †f̂ = 1.

Show that Ĥ2 = Ĥ, and thus find the eigenvalues of Ĥ. If the ket |0〉 satisfies Ĥ|0〉 = 0
with 〈0|0〉 = 1, what are the kets (a) |a〉 ≡ f̂ |0〉, and (b) |b〉 ≡ f̂ †|0〉?
In quantum field theory the vacuum is pictured as an assembly of oscillators, one for
each possible value of the momentum of each particle type. A boson is an excitation of
a harmonic oscillator, while a fermion in an excitation of a Fermi oscillator. Explain the
connection between the spectrum of f̂ †f̂ and the Pauli exclusion principle (which states
that zero or one fermion may occupy a particular quantum state).
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