
Quantum Mechanics: Problems Hilary 2016 (Prof. S. J. Blundell)

Problem sheet 4: (Hilary Term, Weeks 1–2)

� Orbital angular momentum

4.1 (a) Show explicitly using L̂i = εijkx̂j p̂j that [L̂i, x̂j] = i~εijkx̂k and [L̂i, p̂j] = i~εijkp̂k.
(b) Evaluate [L̂x, L̂y] by writing L̂y = ẑp̂x − x̂p̂z and using the results from part (a) of
this question.

(c) You have now evaluated the commutation relation completely generally, but now
let’s just check that it is consistent with what you get from working in a coordinate
representation. Write down expressions for L̂x, L̂y and L̂z in terms of x, y, z and ∂

∂x
, ∂
∂y

and ∂
∂z

. Show that for any differentiable function f(x, y, z)

(L̂xL̂y − L̂yL̂x)f(x, y, z) = i~L̂zf(x, y, z).

Of course, since the above relation is true for any f , this can be written as an operator
equation

[L̂x, L̂y] = L̂xL̂y − L̂yL̂x = i~L̂z,

as you will have found in part (b). Deduce similar expressions for [L̂y, L̂z] and [L̂z, L̂x].

(d) Defining L̂
2

= L̂2
x + L̂2

y + L̂2
z, show that

[L̂x, L̂
2
] = [L̂y, L̂

2
] = [L̂z, L̂

2
] = 0.

(Hint: remember [Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ.)

(e) What are the values of the components of L̂ that you would measure for a wave
function given by ψ(x, y, z) = ψ(|r|)?

4.2 (a) Verify by brute force that the three functions cos θ, sin θ eiφ and sin θ e−iφ are all

eigenfunctions of L̂
2

and L̂z.

(b) Find normalization constants N for each of the above functions so that∫ 2π

0

dφ

∫ π

0

dθ sin θ N2 |ψ(θ, φ)|2 = 1.

(c) Once normalized, these functions are called spherical harmonics and given the symbol
Y`m(θ, φ). Hence deduce that your results are consistent with the functions:

Y10(θ, φ) =

√
3

4π
cos θ; Y11(θ, φ) = −

√
3

8π
sin θ eiφ; Y1−1(θ, φ) =

√
3

8π
sin θ e−iφ.

(Note, you can’t use this method to get the signs of Y10, Y11 and Y1−1. The minus sign
in Y11 can be deduced by using a raising operator L̂+ on Y10. This is not required.)

(d) Rewrite these functions in terms of spherical polar variables [x = r sin θ cosφ, y =
r sin θ sinφ, z = r cos θ] and then sketch |Y10|2, |Y11|2 and |Y1−1|2. (They are angular
functions, so keep r fixed and look at the angle dependence. A cross section in the x–z
plane will do. Why?)
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4.3 The angular part of a system’s wavefunction is

〈θ, φ|ψ〉 ∝ (
√

2 cos θ + sin θ e−iφ − sin θ eiφ).

What are the possible results of measurement of (a) L̂
2
, and (b) L̂z, and their probabil-

ities? What is the expectation value of L̂z?

4.4 A system’s wavefunction is proportional to sin2 θ e2iφ. What are the possible results of

measurements of (a) L̂z and (b) L̂
2
?

4.5 A system’s wavefunction is proportional to sin2 θ. What are the possible results of

measurements of (a) L̂z and (b) L̂
2
? Give the probabilities of each possible outcome.

4.6 A particle of mass m is described the Hamiltonian

Ĥ = − ~2

2m
∇2 − e2

4πε0r
− eE x̂.

(a) What is the physical origin of the last term in Ĥ?

(b) Calculate the commutators [L̂x, x̂], [L̂y, x̂] and [L̂z, x̂].

(c) Which of the observables represented by the operators L̂
2
, L̂x, L̂y and L̂z are constants

of the motion assuming (i) E = 0; (ii) E 6= 0

4.7 Show that L̂i commutes with x̂ · p̂.

� Quantum rotor

4.8 Explain why the rotational energy levels of a diatomic molecule are given by E` =
~2`(`+ 1)/2I where I is the moment of inertia.

Show that for carbon monoxide (CO, in this case with the most common isotopes of
carbon and oxygen, i.e. 12C16O) the moment of inertia about the centre of mass is
I = µs2 where µ = 48mp/7 is the reduced mass and s is the intra-nuclear distance. In
the rotational spectrum of 12C16O the line arising from the transition ` = 4 → 3 is at
461.04077 GHz, while that arising from ` = 36 → 35 is at 4115.6055 GHz. Show from
these data that in a non-rotating CO molecule the intra-nuclear distance is s ∼ 0.113 nm,
and that the electrons in the C—O bond act like a spring connecting the nuclei with a
force constant ∼ 1904 N m−1. Hence show that the vibrational frequency of CO should
lie near 6.47× 1013 Hz (measured value is 6.43× 1013 Hz).

[Hint: recall the classical relation L = Iω. The centripetal force is µsω2 (why?) and see
how this force changes between the two transitions to estimate the spring constant.]
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Quantum Mechanics: Problems

Problem sheet 5: (Hilary Term, Weeks 3–4)

� Spin

5.1 Write down the expression for the commutator [σi, σj] of two Pauli matrices. Show that
the anticommutator of two Pauli matrices is

{σi, σj} = 2δij.

5.2 Let n be any unit vector and σ = (σx, σy, σz) be the vector whose components are the
Pauli matrices. Why is it physically necessary that n · σ satisfy (n · σ)2 = I, where I
is the 2× 2 identity matrix? Let m be a unit vector such that m · n = 0. Why do we
require that the commutator [m · σ,n · σ] = 2i(m× n) · σ? Prove that these relations
follow from the algebraic properties of the Pauli matrices. You should be able to show
that [m · σ,n · σ] = 2i(m× n) · σ for any two vectors n and m.

5.3 Let n be the unit vector in the direction with polar coordinates (θ, φ). Write down the
matrix n · σ and find its eigenvectors. Hence show that the state of a spin-half particle
in which a measurement of the component of spin along n is certain to yield 1

2
~ is

|+,n〉 = sin(θ/2) eiφ/2|−〉+ cos(θ/2) e−iφ/2|+〉,

where |±〉 are the states in which ±1
2

is obtained when sz is measured. Obtain the cor-
responding expression for |−,n〉. Explain physically why the amplitudes in the previous
equation have modulus 2−1/2 when θ = π/2 and why one of the amplitudes vanishes
when θ = π.

5.4 For a spin-half particle at rest, the operator J is equal to the spin operator S. Use
the properties of the Pauli spin matrices to show that in this case the rotation operator
U(α) ≡ exp(−iα · J/~) is

U(α) = I cos
(α

2

)
− iα̂ · σ sin

(α
2

)
,

where α̂ is the unit vector parallel to α. Comment on the value this gives for U(α)
when α = 2π.

5.5 Explain why a spin-1
2

particle in a magnetic field B has a Hamiltonian given by

H = −γS ·B,

where γ is the gyromagnetic ratio which you should define.

In a coordinate system such that B lies along the z-axis, a proton is found to be in a
eigenstate |+, x〉 of Ŝx at t = 0. Find 〈Ŝx〉 and 〈Ŝy〉 for t > 0.
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� S > 1 systems

5.6 Write down the 3 × 3 matrix that represents Sx for a spin-one system in the basis in
which Sz is diagonal (i.e., the basis states are |0〉 and |±〉 with Sz|+〉 = |+〉, etc.)

A beam of spin-one particles emerges from an oven and enters a Stern–Gerlach filter that
passes only particles with Jz = ~. On exiting this filter, the beam enters a second filter
that passes only particles with Jx = ~, and then finally it encounters a filter that passes
only particles with Jz = −~. What fraction of the particles stagger right through?

5.7 A system that has spin angular momentum
√

6~ is rotated through an angle φ around
the z-axis. Write down the 5 × 5 matrix that updates the amplitudes am that Sz will
take the value m.

� Composite systems

5.8 A system AB consists of two non-interacting parts A and B. The dynamical state of A is
described by |a〉, and that of B by |b〉, so |a〉 satisfies the TDSE for A and similarly for |b〉.
What is the ket describing the dynamical state of AB? In terms of the Hamiltonians HA

and HB of the subsystems, write down the TDSE for the evolution of this ket and show
that it is automatically satisfied. Do HA and HB commute? How is the TDSE changed
when the subsystems are coupled by a small dynamical interaction Hint? If A and B
are harmonic oscillators, write down HA, HB. The oscillating particles are connected by
a weak spring. Write down the appropriate form of the interaction Hamiltonian Hint.
Does HA commute with Hint? Explain the physical significance of your answer.

5.9 Explain what is implied by the statement that “the physical state of system A is corre-
lated with the state of system B.” Illustrate your answer by considering the momenta of
cars on (i) London’s circular motorway (the M25) at rush-hour, and (ii) the road over
the Nullarbor Plain in southern Australia in the dead of night.

5.10 Consider a system of two particles of mass m that each move in one dimension along a
given rod. Let |1;x〉 be the state of the first particle when it’s at x and |2; y〉 be the state
of the second particle when it’s at y. A complete set of states of the pair of particles
is {|xy〉} = {|1;x〉|2; y〉}. Write down the Hamiltonian of this system given that the
particles attract one another with a force that’s equal to C times their separation.

Suppose that the particles experience an additional potential V (x, y) = 1
2
C(x+y)2. Show

that the dynamics of the two particles is now identical with that of a single particle that
moves in two dimensions in a particular potential Φ(x, y), and give the form of Φ.

5.11 In the lectures we derived Bell’s inequality by considering measurements by Alice and
Bob on an entangled pair of spins prepared in a singlet state. Bob measures the com-
ponent of spin along an axis that is inclined by angle θ to that used by Alice. Given the
expression

|−, b〉 = cos(θ/2) eiφ/2|−〉 − sin(θ/2) e−iφ/2|+〉,

for the state of a spin-half particle in which it has spin−1
2

along the direction b with polar
angles (θ, φ), with |±〉 the states in which there is spin ±1

2
along the z-axis, calculate

the amplitude that Bob finds the positron’s spin to be −1
2

given that Alice has found
+1

2
for the electron’s spin. Hence show that the corresponding probability is cos2(θ/2).
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Quantum Mechanics: Problems

Problem sheet 6: (Hilary Term, Weeks 5–6)

� The hydrogen atom

6.1 Some things about hydrogen’s gross structure that it’s important to know (ignore spin
throughout):

(a) What quantum numbers characterise stationary states of hydrogen?

(b) What combinations of values of these numbers are permitted?

(c) Give the formula for the energy of a stationary state in terms of the Rydberg R.
What is the value of R in eV?

(d) How many stationary states are there in the first excited level and in the second
excited level?

(e) What is the wavefunction of the ground state?

(f) Write down an expression for the mass of the reduced particle.

(g) We can apply hydrogenic formulae to any two charged particles that are electro-
statically bound. How does the ground-state energy then scale with (i) the mass
of the reduced particle, and (ii) the charge Ze on the nucleus? (iii) How does the
radial scale of the system scale with Z?

6.2 An electron is in the ground state of a hydrogen-like atom with nuclear charge +Ze.

(a) What is its average distance from the nucleus?

(b) At what distance from the nucleus is it most likely to be found?

(c) Show that the expectation value of the potential energy of the electron is the same
as that given by the Bohr model, namely −Ze2/4πε0r0 where r0 = a0/Z.

(d) Show that the expectation value of the kinetic energy is equal to the value given by
the Bohr model, namely Ze2/8πε0r0.

(e) Hence verify that the expectation value of the total energy agrees with the Bohr
model.

6.3 Show that the speed of a classical electron in the lowest Bohr orbit is v = αc, where
α = e2/4πε0~c is the fine-structure constant. What is the corresponding speed for a
hydrogen-like Fe ion (atomic number Z = 26)? Given these results, what fractional
errors must we expect in the energies of states that we derive from non-relativistic
quantum mechanics.

6.4 Show that the electric field experienced by an electron in the ground state of hydrogen is
of order 5× 1011 V m−1. Why is it impossible to generate comparable macroscopic fields
using charged electrodes. Lasers are available that can generate beam fluxes as big as
1022 W m−2. Show that the electric field in such a beam is of comparable magnitude.
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6.5 Positronium consists of an electron e− and a positron e+ (both spin-half and of equal
mass) in orbit around one another. What are its energy levels? By what factor is a
positronium atom bigger than a hydrogen atom?

6.6 Muonium consists of an electron e− and a positive muon µ+ (both spin-half particles
but mµ = 206.7me) in orbit around one another. What are its energy levels? By what
factor is muonium atom bigger than a hydrogen atom?

6.7 The emission spectrum of the He+ ion contains the Pickering series of spectral lines that
is analogous to the Lyman, Balmer and Paschen series in the spectrum of hydrogen

Balmer i = 1, 2, . . . 0.456806 0.616682 0.690685 0.730884
Pickering i = 2, 4, . . . 0.456987 0.616933 0.690967 0.731183

The table gives the frequencies (in 1015 Hz) of the first four lines of the Balmer series
and the first four even-numbered lines of the Pickering series. The frequencies of these
lines in the Pickering series are almost coincident with the frequencies of lines of the
Balmer series. Explain this finding. Provide a quantitative explanation of the small
offset between these nearly coincident lines in terms of the reduced mass of the electron
in the two systems. (In 1896 E.C. Pickering identified the odd-numbered lines in his
series in the spectrum of the star ζ Puppis. Helium had yet to be discovered and he
believed that the lines were being produced by hydrogen. Naturally he confused the
even-numbered lines of his series with ordinary Balmer lines.)

6.8 Show that for hydrogen the matrix element 〈2, 0, 0|z|2, 1, 0〉 = −3a0. On account of the
non-zero value of this matrix element, when an electric field is applied to a hydrogen
atom in its first excited state, the atom’s energy is linear in the field strength.
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Quantum Mechanics: Problems

Problem sheet 7: (Easter vacation)

� Hydrogen

7.1 Tritium, 3H, is highly radioactive and decays with a half-life of 12.3 years to 3He by the
emission of an electron from its nucleus. The electron departs with 16 keV of kinetic
energy. Explain why its departure can be treated as sudden in the sense that the electron
of the original tritium atom barely moves while the ejected electron leaves.

Calculate the probability that the newly formed 3He atom is in an excited state. Hint:
evaluate 〈1, 0, 0;Z = 2|1, 0, 0;Z = 1〉

7.2 By writing L2 = (x× p) · (x× p) =
∑

ijklm εijkxjpk εilmxlpm show that

p2 =
L2

r2
+

1

r2
{

(r · p)2 − i~r · p
}
.

By showing that p · r̂ − r̂ · p = −2i~/r, obtain r · p = rpr + i~. Hence obtain

p2 = p2r +
L2

r2
.

Give a physical interpretation of one over 2m times this equation.

� More on angular momentum

7.3 An electron is in a magnetic field B along the z-axis. A measurement at time t = 0
shows its spin to be in the x-direction. Find the probabilities that at a later time t the
electron will be (i) in the x-direction, (ii) in the −x direction, and (iii) in the z-direction.

7.4 Confirm, for the cases ` = 1 and ` = 2 that

∑̀
m=−`

|Y m
` |2 = a constant.

Discuss the significance of this result for the electron probability distributions in the
hydrogen atom.

7.5 Show that 〈j, j|Ĵx|j, j〉 = 〈j, j|Ĵy|j, j〉 = 0 and that 〈j, j|Ĵ2
x + Ĵ2

y |j, j〉 = j~2. Discuss the
implications of these results for the uncertainty in the orientation of the classical angular
momentum vector J for both small and large values of j.

7.6 A is a beam of atoms with spin-1
2

with the spin alined along the +x-axis. B is a beam
of similar unpolarised atoms. A and B are separately passed through a Stern-Gerlach
apparatus aligned along z. In each case you get two emerging beams coming out of the
Stern-Gerlach experiment. Is there any difference between the two cases? If so, how
could you detect that experimentally?
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� Combining angular momentum

7.7 When two angular momenta j1 and j2 are combined, the possible states of the resulting
combination are descrived by J = |j1 − j2|, |j1 − j2| + 1, . . . j1 + j2. Show (for the case
j1 ≥ j2, which you can choose without loss of generality) that the total degeneracy of
the resulting states is given by

j1+j2∑
J=j1−j2

(2J + 1) = (2j1 + 1)(2j2 + 1),

and explain why this equal to the number of states of the two angular momenta before
they were combined.

7.8 A box containing two spin-1 objects A and B is found to have angular-momentum
quantum numbers J = 2, M = 1. Determine the probabilities that when Jz is measured
for A (in units of ~), the values m = ±1 and 0 will be obtained.

7.9 The angular momentum of a hydrogen atom in its ground state is entirely due to the
spins of the electron and proton. The atom is in the state |1, 0〉 in which it has one
unit of angular momentum but none of it is parallel to the z-axis. Express this state as
a linear combination of products of the spin states |±, e〉 and |±, p〉 of the proton and
electron. Show that the states |x±, e〉 in which the electron has well-defined spin along
the x-axis are

|x±, e〉 =
1√
2

(|+, e〉 ± |−, e〉) .

By writing
|1, 0〉 = |x+, e〉〈x+, e|1, 0〉+ |x−, e〉〈x−, e|1, 0〉,

express |1, 0〉 as a linear combination of the products |x±, e〉|x±, p〉. Explain the physical
significance of your result.
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