# Mathematical Methods MT2011: Problems 4 

John Magorrian, magog@thphys.ox.ac.uk
(mostly recycled from Fabian Essler's MT2009 problems)

## 1. Orthogonality

In problem set 2 you showed that $N$ orthogonal vectors are automatically linearly independent. Let the functions $\Psi_{n}(x)$ be orthogonal over the interval $[a, b]$ with respect to the weight function $w(x)$. Show that the functions $\Psi_{n}(x)$ are linearly indepdendent.
2. Orthogonal, normalised eigenfunctions

The real functions $u_{n}(x)(n=1$ to $\infty)$ are an orthogonal, normalised set on the interval $(a, b)$ with weight function $w(x)=1$. The function $f(x)$ is expressed as a linear combination of the $u_{n}(x)$ via

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} u_{n}(x) \tag{Q2.1}
\end{equation*}
$$

Show that
(i)

$$
\begin{equation*}
a_{n}=\int_{a}^{b} u_{n}(x) f(x) \mathrm{d} x \tag{Q2.2}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{a}^{b}[f(x)]^{2} \mathrm{~d} x=\sum_{n=1}^{\infty} a_{n}^{2} \tag{Q2.3}
\end{equation*}
$$

[Hint for part (ii): writing out the left-hand side in long-hand notation gives

$$
\begin{align*}
& \int_{a}^{b}\left(a_{1} u_{1}(x)+a_{2} u_{2}(x)+\cdots\right)\left(a_{1} u_{1}(x)+a_{2} u_{2}(x)+\cdots\right) \mathrm{d} x \\
& \quad=\int_{a}^{b}\left[a_{1}^{2}\left[u_{1}(x)\right]^{2}+a_{2}^{2}\left[u_{2}(x)\right]^{2}+\cdots+2 a_{1} a_{2} u_{1}(x) u_{2}(x)+\cdots\right] \mathrm{d} x \tag{Q2.4}
\end{align*}
$$

Why do the $\int\left[u_{n}(x)\right]^{2} \mathrm{~d} x$ terms each give 1 ? Why do the $\int u_{n}(x) u_{m}(x) \mathrm{d} x$ terms with $n \neq m$ each give 0?]
3. Eigenvalues and eigenfunctions

By substituting $x=\mathrm{e}^{t}$, find the normalized eigenfunctions $y_{n}(x)$ and the eigenvalues $\lambda_{n}$ of the operator $\hat{\mathcal{L}}$ defined by

$$
\begin{equation*}
\hat{\mathcal{L}} y=x^{2} y^{\prime \prime}+2 x y^{\prime}+\frac{1}{4} y, \quad 1 \leq x \leq \mathrm{e} \tag{Q3.1}
\end{equation*}
$$

with boundary conditions $y(1)=y(\mathrm{e})=0$.
4. Hermiticity

Consider the set of functions $\{f(x)\}$ of the real variable $x$ defined on the interval $-\infty<x<\infty$ that go to zero faster than $1 / x$ for $x \rightarrow \pm \infty$, i.e.,

$$
\begin{equation*}
\lim _{x \rightarrow \pm \infty} x f(x)=0 \tag{Q4.1}
\end{equation*}
$$

For unit weight function, determine which of the following linear operators is Hermitian when acting upon $\{f(x)\}$ :
(a) $\frac{\mathrm{d}}{\mathrm{d} x}+x$
(b) $-\mathrm{i} \frac{\mathrm{d}}{\mathrm{d} x}+x^{2}$
(c) ix $\frac{\mathrm{d}}{\mathrm{d} x}$
(d) $i x \frac{d^{3}}{d x^{3}}$.
5. More Hermiticity

Recall that an operator $A$ is Hermitian if $\langle u| A|v\rangle=\langle v| A|u\rangle^{\star}$, or, equivalently,

$$
\begin{equation*}
\int_{a}^{b} u^{\star}(x)[A v(x)] w(x) \mathrm{d} x=\left[\int_{a}^{b} v^{\star}(x)[A u(x)] w(x) \mathrm{d} x\right]^{\star}=\int_{a}^{b}[A u(x)]^{\star} v(x) w(x) \mathrm{d} x . \tag{Q5.1}
\end{equation*}
$$

The dual $A^{\dagger}$ of the operator $A$ is defined such that $\langle u| A^{\dagger}|v\rangle=\langle v| A|u\rangle^{\star}$, or, equivalently

$$
\begin{equation*}
\int_{a}^{b} u^{\star}(x)\left[A^{\dagger} v(x)\right] w(x) \mathrm{d} x=\int_{a}^{b}[A u(x)]^{\star} v(x) w(x) \mathrm{d} x . \tag{Q5.2}
\end{equation*}
$$

(a) Let $A$ be a non-Hermitian operator. Show that $A+A^{\dagger}$ and $\mathrm{i}\left(A-A^{\dagger}\right)$ are Hermitian operators.
(b) Using the preceding result, show that every non-Hermitian operator may be written as a linear combination of two Hermitian operators.
6. Sturm-Liouville Problem

The equation

$$
\begin{equation*}
\hat{\mathcal{L}} y(x)=\lambda y(x) \tag{Q6.1}
\end{equation*}
$$

is a Sturm-Liouville equation for the operator

$$
\begin{equation*}
\hat{\mathcal{L}}=\frac{1}{w(x)}\left[\frac{\mathrm{d}}{\mathrm{~d} x}\left(p(x) \frac{\mathrm{d}}{\mathrm{~d} x}\right)+q(x)\right] \tag{Q6.2}
\end{equation*}
$$

where $p(x), q(x)$ and $w(x)$ are real functions with $w(x)>0$. Any two real solutions $y_{n}(x), y_{m}(x)$ with distinct eigenvalues $\lambda_{n}, \lambda_{m}$ satisfy the boundary condition

$$
\begin{equation*}
\left.\left[y_{m} p \frac{\mathrm{~d} y_{n}}{\mathrm{~d} x}\right]\right|_{x=a}=\left.\left[y_{m} p \frac{\mathrm{~d} y_{n}}{\mathrm{~d} x}\right]\right|_{x=b} \tag{Q6.3}
\end{equation*}
$$

Without assuming any results proved in lectures, show by direct integration that

$$
\begin{equation*}
\int_{a}^{b} y_{n}(x) y_{m}(x) w(x) \mathrm{d} x=0 \tag{Q6.4}
\end{equation*}
$$

when $n \neq m$.
7. Express the differential equation

$$
\begin{equation*}
x y^{\prime \prime}+(k+1-x) y^{\prime}=\lambda y \tag{Q7.1}
\end{equation*}
$$

where $k$ is a constant, as a Sturm-Liouville equation. What are the natural limits $(a, b)$ to place on $x$ to satisfy the Sturm-Liouville boundary conditions?
8. Quantum harmonic oscillator

Consider the time-independent Schrödinger equation for the quantum harmonic oscillator

$$
\begin{align*}
H \psi(x) & =E \psi(x) \\
H & =-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+\frac{1}{2} m \omega^{2} x^{2} \tag{Q8.1}
\end{align*}
$$

(a) Using the substitutions $y=x \sqrt{\frac{m \omega}{\hbar}}$ and $\epsilon=E / \hbar \omega$ reduce the Schrödinger equation to

$$
\begin{equation*}
\frac{\mathrm{d}^{2}}{\mathrm{~d} y^{2}} \Psi(y)+\left(2 \epsilon-y^{2}\right) \Psi(y)=0 \tag{Q8.2}
\end{equation*}
$$

(b) Consider the limit $y \rightarrow \infty$ and verifty that in this limit

$$
\begin{equation*}
\Psi(y) \rightarrow A y^{k} \mathrm{e}^{-y^{2} / 2} \tag{Q8.3}
\end{equation*}
$$

Hint: you can neglect $\epsilon$ compared to $y^{2}$ in this limit.
(c) Separate off the exponential factor and define

$$
\begin{equation*}
\Psi(y)=u(y) \mathrm{e}^{-y^{2} / 2} \tag{Q8.4}
\end{equation*}
$$

Show that $u(y)$ fulfils the ODE

$$
\begin{equation*}
u^{\prime \prime}-2 y u^{\prime}+(2 \epsilon-1) u=0 \tag{Q8.5}
\end{equation*}
$$

(d) Show that this differential equation can be converted to Sturm-Liouville form by multiplying both sides of the equation by $\mathrm{e}^{-y^{2}}$. What is the weight function $w(y)$ of the Sturm-Liouville problem?
(e) Solve (Q8.5) by the ansatz

$$
\begin{equation*}
u(y)=\sum_{n=0}^{\infty} a_{n} y^{n} \tag{Q8.6}
\end{equation*}
$$

by deriving a recurrence relation for the coefficients $a_{n}$. You should get

$$
\begin{equation*}
a_{n+2}=a_{n} \frac{(2 n+1-2 \epsilon)}{(n+2)(n+1)} \tag{Q8.7}
\end{equation*}
$$

(f) We know from (b) that for $y \rightarrow \infty$ the function $u(y)$ must go to $A y^{k}$. This means that the recurrence relation must terminate, i.e., we must have $a_{n}=0$. This quantizes the allowed values of $\epsilon=E / \hbar \omega$ :

$$
\begin{equation*}
\epsilon_{n}=n+\frac{1}{2}, \quad n=0,1,2, \ldots \tag{Q8.8}
\end{equation*}
$$

Find the polynomial solutions $H_{n}(x)$ corresponding to these values of $\epsilon$ for $n=0,1,2,3$. These polynomials are called Hermite polynomials.
(g) Show that your results for $n=0,1,2,3$ agree with Rodrigues' formula

$$
\begin{equation*}
H_{n}(x)=(-1)^{n} \mathrm{e}^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-x^{2}} \tag{Q8.9}
\end{equation*}
$$

(h) Show that the $H_{n}$ can be normalized such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} \mathrm{d} y \mathrm{e}^{-y^{2}} H_{n}(y) H_{l}(y)=\delta_{n l} \sqrt{\pi} 2^{n} n!. \tag{Q8.10}
\end{equation*}
$$

9. Generating function

Hermite polynomials can be defined by the generating function

$$
\begin{equation*}
G(x, t)=\mathrm{e}^{x^{2}} \mathrm{e}^{-(t-x)^{2}}=\mathrm{e}^{2 t x-t^{2}}=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!} \tag{Q9.1}
\end{equation*}
$$

(a) Find $H_{0}(x), H_{1}(x), H_{2}(x)$ by expanding this generating function as a power law in $t$.
(b) By differentiating $G(x, t)$ with respect to $t$, show that

$$
\begin{equation*}
2(x-t) \sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} H_{n}(x) n \frac{t^{n-1}}{n!} \tag{Q9.2}
\end{equation*}
$$

and hence that the $H_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \tag{Q9.3}
\end{equation*}
$$

(c) By differentiating $G(x, t)$ with respect to $x$, show that

$$
\begin{equation*}
H_{n}^{\prime}(x)=2 n H_{n-1}(x) \tag{Q9.4}
\end{equation*}
$$

(d) Using the results from (b) and (c), show that the $H_{n}$ defined in this way satisfy Hermite's differential equation

$$
\begin{equation*}
H_{n}^{\prime \prime}-2 x H_{n}^{\prime}+2 n H_{n}=0 \tag{Q9.5}
\end{equation*}
$$

10. Legendre polynomials

Position vectors $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$ are such that $r_{2} \gg r_{1}$, where $r_{1}=\left|\mathbf{r}_{1}\right|$ and $r_{2}=\left|\mathbf{r}_{2}\right|$. Show that

$$
\begin{equation*}
\frac{1}{\left|\mathbf{r}_{2}-\mathbf{r}_{1}\right|}=\frac{1}{r_{2}}\left\{1+\left(\frac{r_{1}}{r_{2}}\right) P_{1}\left(\cos \theta_{12}\right)+\left(\frac{r_{1}}{r_{2}}\right)^{2} P_{2}\left(\cos \theta_{12}\right)+\cdots\right\} \tag{Q10.1}
\end{equation*}
$$

where $\theta_{12}$ is the angle between $\mathbf{r}_{1}$ and $\mathbf{r}_{2}$, and $P_{1}(\cos \theta)=\cos \theta, P_{2}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)$.
An electric quadrupole is formed by charges $Q$ and coordinates $(0, \pm a, 0)$ and charges $-Q$ at coordinates $( \pm a, 0,0)$. Show that the potential $V$ in the $(x, y)$ plane at a distance $r$ large compared to $a$ is approximately

$$
\begin{equation*}
V=\frac{-3 Q a^{2} \cos 2 \theta}{4 \pi \epsilon_{0} r^{3}} \tag{Q10.2}
\end{equation*}
$$

where $\theta$ is the angle between $\mathbf{r}$ and the $x$-axis.
Derive an expression for the couple exerted on the quadrupole by a positive point charge $Q$ at a position $\mathbf{r}$ in the $(x, y)$ plane, where $r \gg a$.

Deduce the angles $\theta$ for which this couple is zero. If the charges of the quadrupole are rigidly connected and free to rotate about the $z$-axis, determine whether the equilibrium is stable or unstable in each case.

