Mathematical Methods MT2011: Problems 4

John Magorrian, magog@thphys.ox.ac.uk

(mostly recycled from Fabian Essler’s MT2009 problems)

Orthogonality

In problem set 2 you showed that N orthogonal vectors are automatically linearly independent. Let the
functions ¥, (z) be orthogonal over the interval [a,b] with respect to the weight function w(z). Show
that the functions ¥, (x) are linearly indepdendent.

Orthogonal, normalised eigenfunctions

The real functions u,(x) (n = 1 to co) are an orthogonal, normalised set on the interval (a,b) with
weight function w(z) = 1. The function f(x) is expressed as a linear combination of the u, (z) via

f(z) = Zanun(:p). (Q2.1)
Show that
(i) )
an = / up () f(x) da; (Q2.2)

(i)
b %)
[lr@ra=3"a. (Q23)

a n=1

[Hint for part (ii): writing out the left-hand side in long-hand notation gives

b
/ (ar1ur(z) + agua(x) + - - ) (a1us () + agua(z) + -+ ) da
; (Q2.4)

b
— / [a?[m(x)P + ag [uQ(x)]2 + -+ 2a1a9us (z)ug(z) + - - } dex.

Why do the [[u,(z)]?dz terms each give 17 Why do the [ u,(2)uy,(z)dz terms with n # m each give
07)

Eigenvalues and eigenfunctions

By substituting z = e!, find the normalized eigenfunctions y, () and the eigenvalues \,, of the operator
L defined by

R 1
Ly = zy" + 2xy + 1 1<z <e, (Q3.1)

with boundary conditions y(1) = y(e) = 0.
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Hermiticity

Consider the set of functions {f(x)} of the real variable = defined on the interval —oco < z < oo that go
to zero faster than 1/x for x — +o0, i.e.,

lim zf(z)=0. (Q4.1)

z—+o0

For unit weight function, determine which of the following linear operators is Hermitian when acting
. . . 3
upon {f(2)}:  (a) §y + (b) iy +2% (o) iwg (d) irgs.

More Hermiticity

Recall that an operator A is Hermitian if (u| A |v) = (v| A |u)*, or, equivalently,

b b * b
/ w*(z) [Av(z)] w(z)dz = l/ v*(z) [Au(z)) w(x)dx] :/ [Au(z)]" v(x) w(z)dz. (Q5.1)
The dual AT of the operator A is defined such that (u| AT [v) = (v| A |u)*, or, equivalently

b b
/ u*(z) [ATv(x)] w(x)da::/ [Au(z)]" v(z) w(z)dz. (Q5.2)

(a) Let A be a non-Hermitian operator. Show that A + A" and i(A — AT) are Hermitian operators.
(b) Using the preceding result, show that every non-Hermitian operator may be written as a linear
combination of two Hermitian operators.

Sturm~—Liouville Problem

The equation R
Ly(x) = My(x) (Q6.1)
is a Sturm-Liouville equation for the operator

=i (o) +at)] (@6:2)

where p(z), ¢(z) and w(x) are real functions with w(z) > 0. Any two real solutions y, (), ym (x) with
distinct eigenvalues \,,, A, satisfy the boundary condition

dyn dyn
p— = |y p— 6.3
|:y P d$:| r=a |:y P d$:| z=b (Q )
Without assuming any results proved in lectures, show by direct integration that
b
| n@n(@) w(w)de =0 (Qo.)
when n # m.
Express the differential equation
ay’ + (k+1—a2)y =Ny, (Qr.1)

where k is a constant, as a Sturm-Liouville equation. What are the natural limits (a,b) to place on z
to satisfy the Sturm-Liouville boundary conditions?
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Quantum harmonic oscillator
Consider the time-independent Schrodinger equation for the quantum harmonic oscillator

Hp(x) = B (),
R 1, (Q8.1)

(a) Using the substitutions y = z,/"* and € = F//hw reduce the Schrodinger equation to

j—yﬂ(w (2~ 2 T(y) = 0. (Q8.2)

(b) Consider the limit y — co and verifty that in this limit
U(y) — AyPFe V12, (Q8.3)

Hint: you can neglect € compared to %2 in this limit.
(c) Separate off the exponential factor and define

U(y) = uly)e /. (Q8.4)
Show that u(y) fulfils the ODE
u” = 2yu’ + (2¢ — 1)u = 0. (Q8.5)

(d) Show that this differential equation can be converted to Sturm-Liouville form by multiplying
both sides of the equation by e~%’. What is the weight function w(y) of the Sturm-Liouville
problem?

(e) Solve (Q8.5) by the ansatz

o0
u(y) =Y any" (Q8.6)
n=0
by deriving a recurrence relation for the coefficients a,,. You should get

(2n+1—2e¢)
Apto = Qp .
+2 (n+2)(n+1)

(Q8.7)
(f) We know from (b) that for y — oo the function u(y) must go to Ay*. This means that the

recurrence relation must terminate, i.e., we must have a,, = 0. This quantizes the allowed values
of e = E/hw:

1
en:n+§, n=0,1,2,.... (Q8.8)

Find the polynomial solutions H,(x) corresponding to these values of € for n = 0, 1, 2, 3. These
polynomials are called Hermite polynomials.
(g) Show that your results for n = 0, 1, 2, 3 agree with Rodrigues’ formula

dTl 2
H — _1 n $27 —x A .
a@) = (-1 (@89
(h) Show that the H,, can be normalized such that
/ dye™ H, (y)H(y) = 6uv/72"n). (Q8.10)



9.

Generating function

Hermite polynomials can be defined by the generating function
22 (t—z)2 o—t2 i tm
Gz, 1) = o o= (=) = 2ot :ZHn(x)m. (Q9.1)
n=0

(a) Find Hy(x), Hy(z), Ha(x) by expanding this generating function as a power law in ¢.
(b) By differentiating G(z,t) with respect to t, show that

o n > n—1
2z — 1) Z%Hn(x)il - Z;JHn(x)ntn! (Q9.2)
and hence that the H, (z) satisfy the recurrence relation
Hyq(x) = 2¢Hy,(z) — 2nH, 1 (). (Q9.3)
(¢) By differentiating G(z,t) with respect to x, show that
H/(z) =2nH,_1(z). (Q9.4)

(d) Using the results from (b) and (c), show that the H, defined in this way satisfy Hermite’s
differential equation
H]! —2zH] +2nH, =0. (Q9.5)

10. Legendre polynomials

Position vectors r; and ry are such that ro > r1, where 1 = |r1| and ro = |ra|. Show that

1 1 {1 n <”> Pi(cos O1s) + (2)2 Py(cos b12) + - - } : (Q10.1)

ro —11] 7o T2

where ;5 is the angle between ry and ra, and Py (cos) = cosf, Pa(cosf) = (3cos?6 —1).

An electric quadrupole is formed by charges @ and coordinates (0,=+a,0) and charges —Q at coordi-
nates (+a,0,0). Show that the potential V' in the (x,y) plane at a distance r large compared to a is
approximately

B —3Qa? cos 20

V= (Q10.2)
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where 6 is the angle between r and the z-axis.

Derive an expression for the couple exerted on the quadrupole by a positive point charge ) at a position
r in the (z,y) plane, where r > a.

Deduce the angles € for which this couple is zero. If the charges of the quadrupole are rigidly connected
and free to rotate about the z-axis, determine whether the equilibrium is stable or unstable in each case.



