
Mathematical Methods MT2011: Problems 2

John Magorrian, magog@thphys.ox.ac.uk

(mostly recycled from Fabian Essler’s MT2009 problems)

Matrix addition and multiplication

1. The matrix equation c = Aa+b can be written using index notation together with the convention that
repeated indices are summed over as ci = Aijaj + bi. Write the following expressions in matrix form:
(a) bj = Ajiai (b) bl = A?

klak (c) bjAjkbk (d) Cij = AkiBkj (e) Fij = BjkAki (f) AijδjkBki.

2. By considering the matrices A =

(
0 0
−1 0

)
B =

(
0 0
0 1

)
show that AB = 0 does not imply that either

A or B is the zero matrix. Allowing A and B to be any square matrices, show that AB = 0 implies
that at least one of them is singular, i.e., has zero determinant.

3. Show that if [A,B] = 0 then

(A+B)n =

n∑
i=0

(
n

i

)
AiBn−i, (Q3.1)

identifying clearly where you make use of the fact that [A,B] = 0. Use this result to show that
if [A,B] = 0 then expA expB = exp(A + B). Give an example of A,B for which [A,B] 6= 0 and
expA expB 6= exp(A+B).

4. Consider the matrices σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. Which of the matrices are

symmetric? Which are Hermitian? By calculating the commutators of these matrices, show that they
can be written as [σa, σb] = 2iεabcσ

c, where εabc is the alternating tensor and on the right-hand side
the summation convention is employed (i.e., the index c is summed over). Write exp(iασy) (α is a real
number) as a 2× 2 matrix. What does it represent? Show that exp(iασy) is unitary without writing it
explicitly as a 2× 2 matrix.

5. Let A be an operator on a complex vector space V and let |v1〉 and |v2〉 be any two vectors from V.
Verify that

4〈v2|A |v1〉=〈v+|A |v+〉−〈v−|A |v−〉+
〈
v′+
∣∣A ∣∣v′+〉i−〈v′−∣∣A ∣∣v′−〉i, (Q5.1)

where |v±〉≡ |v1〉± |v2〉 and
∣∣v′±〉≡ |v1〉± i |v2〉. Use this result to show that

(i) if 〈v|A |v〉= 0 for all vectors |v〉∈ V then A = 0;
(ii) A is Hermitian if and only if 〈v|A |v〉 is real for all |v〉 ∈ V. (Hint: if 〈v|A |v〉 is real then
〈v|A |v〉−〈v|A |v〉? = 0.)
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Change of basis

~e1

~e2

~e′1

~e′2

α

6. Consider the vector space V of arrows in the plane. Let A be the linear operator
that rotates all vectors by 45 degrees and then reflects them with respect to
the horizontal. Let B1 = {~e1, ~e2} be the standard Cartesian basis and let B2 =
{~e′1, ~e′2} be another orthonormal basis of V which is obtained from {~e1, ~e2} by a
rotation by an angle α (see figure). Write down the transformation that takes
~e1,2 to ~e′1,2 in matrix form. What are the coordinate representations of A with
respect to the bases B1 and B2 respectively? What is the matrix equation
that relates these two coordinate representations?

Rank, trace, determinant

7. Find the rank of the following matrices by reducing them to upper triangular form: 1 0 1
0 3 0
1 2 −1

 ,

 1 1 1
1 −2 1
1 0 −1

 ,

 1 2 3
1 −1 −1
5 −2 −1

 ,

 1 x y
3x 2y 1
x y 1

 . (Q7.1)

8. Here is one way of proving that det(AB) = detAdetB, where A and B are n× n matrices.
(i) Verify that the matrices involved can written as

A =

 e1A
...

enA

 , B =

 e1B
...

enB

 , AB =


∑

j1
A1j1ej1B

...∑
jn
AnjnejnB

 , (Q8.1)

where ek is a row vector having 1 in the kth slot and zeros everywhere else.
(ii) Show that

det


α~a+ β~b
~c2
...
~cn

 = α det


~a
~c2
...
~cn

+ β det


~b
~c2
...
~cn

 , (Q8.2)

where ~a, ~b, ~c2, ..., ~cn are n-dimensional row vectors and α, β are scalars.
(iii) Explain why

det(AB) =

n∑
j1=1

· · ·
n∑

jn=1

A1j1 · · ·Anjn det

 ej1B
...

ejnB

 . (Q8.3)

(iv) We need only consider terms in which (j1, . . . , jn) are distinct – why? Hence show that (Q8.3)
can be written as

det(AB) =
∑
P

A1P (1) · · ·AnP (n) sgn(P ) det

 e1B
...

enB

 = detAdetB. (Q8.4)
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9. Show by direct expansion of the determinant that

det(I + εA) = 1 + ε trA+O(ε2) (Q9.1)

and hence that
det(expA) = exp(trA). (Q9.2)

10. By taking the trace of both sides, prove that there are no finite-dimensional matrix representations
of the momentum operator p and the position operator x which satisfy [p, x] = −i~. Why does this
argument fail if the matrices are infinite dimensional (as Heisenberg’s were)?

Rotations, eigenvalues, eigenvectors

11. Which of these matrices represents a rotation?

 − 1
2 −

√
3
2 0

−
√
3
2

1
2 0

0 0 1

 ,


1
4

3
4 −

√
3
8

3
4

1
4

√
3
8√

3
8 −

√
3
8 − 1
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 . (Q11.1)

Find the angle and axis of the rotation. What does the other matrix represent?

12. Let A =

(
cosφ sinφ
− sinφ cosφ

)
and B =

(
cos θ sin θ
− sin θ cos θ

)
.

(a) Multiply A and B together and interpret the result in terms of 2D rotations.
(b) Evaluate the product ATA and interpret the result. Evaluate ATB and interpret the result.
(c) Find the eigenvalues and eigenvectors of A. (Remember that they do not have to be real. Why

not?)

13.

(a) Find the eigenvalues of the Pauli matrix σy =

(
0 −i
i 0

)
. Normalise the two corresponding

eigenvectors, ~u1, ~u2, so that ~u†1 · ~u1 = ~u†2 · ~u2 = 1. Check that ~u†1 · ~u2 = 0. Form the matrix
U = ( ~u1 ~u2 ) and verify that U†U = I. Evaluate U†σyU . What have you learned from this
calculation?

(b) A general 2-component complex vector ~v = (c1, c2)T is expanded as a linear combination of the
eigenvectors ~u1 and ~u2 via

~v = α~u1 + β~u2, (Q13.1)

where α and β are complex numbers. Determine α and β in terms of c1 and c2 in two ways: (i)

by equating corresponding components of (Q13.1), (ii) by showing that α = ~u†1 ·~v, β = ~u†2 ·~v and
evaluating these products.

14. Verify that the matrix A =

 0 1 0
1 0 0
0 0 2

 has eigenvalues −1, 1, 2 and find the associated normalised

eigenvectors ~u1, ~u2, ~u3. Construct the matrix R = ( ~u1 ~u2 ~u3 ) and show that it is orthogonal and
that it diagonalises A.
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15. Construct a real symmetric matrix whose eigenvalues are 2, 1 and -2, and whose corresponding nor-
malised eigenvectors are 1√

2
(0, 1, 1)T, 1√

2
(0, 1,−1)T and (1, 0, 0)T.

16. Find the eigenvalues and eigenvectors of the matrix F =

(
4 −2
−2 1

)
. Hence, proving the validity of

the method you use, find the values of the elements of the matrix Fn, where n is a positive integer.

17. Write down the matrix R1 for a three-dimensional rotation through π/4 about the z-axis and the
matrix R2 for a rotation through π/4 about the x-axis. Calculate Q1 = R1R2 and Q2 = R2R1; explain
geometrically why they are different.

18. By finding the eigenvectors of the Hermitian matrix H =

(
10 3i
−3i 2

)
construct a unitary matrix U

such that U†HU = D, where D is a real diagonal matrix.

19. Which of the following matrices have a complete set of eigenvectors in common?

A =

(
6 −2
−2 9

)
, B =

(
1 8
8 −11

)
, C =

(
−9 −10
−10 5

)
, D =

(
14 2
2 11

)
. (Q19.1)

Construct the common set of eigenvectors where possible.

20. What are the eigenvalues and eigenvectors of the matrix σ+ = 1
2 (σx + iσy) =

(
0 1
0 0

)
? Can σ+ be

diagonalised?

Quadratic forms

21.
(i) Show that the quadratic form 4x2 + 2y2 + 2z2 − 2xy + 2yz − 2zx can be written as ~xTV ~x where

V is a symmetric matrix. Find the eigenvalues of V . Explain why, by rotating the axes, the
quadratic form may be reduced to the simple expression λx′2 + µy′2 + νz′2; what are λ, µ, ν?

(ii) The components of the current density vector~j in a conductor are proportional to the components

of the applied electric field ~E in simple (isotropic) cases: ~j = σ ~E. In crystals, however, the relation

may be more complicated, though still linear, namely of the form ja =
∑3

b=1 σabEb, where σab for
the entries in a real symmetric 3×3 matrix and the index a runs from 1 to 3. In a particular case,

the quantities σab are given (in certain units) by

 4 −1 −1
−1 2 1
−1 1 2

. Explain why by a rotation

of the axes the relation between ~j and ~E can be reduced to j′1 = σ̃1E
′
1, j′2 = σ̃2E

′
2, j′3 = σ̃3E

′
3

and find σ̃1, σ̃2 and σ̃3.
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