Mathematical Methods MT2011: Problems 1

John Magorrian, magog@thphys.ox.ac.uk
(mostly recycled from Fabian Essler's MT2009 problems)

Linear independence, dimension, bases

1. Show that the space of 2×2 matrices is a linear vector space. What is its dimension? Give a basis for this space.
2. What is the dimension of the space of $n \times n$ matrices? Give a basis for this space.
3. What is the dimension of the space of $n \times n$ matrices all of whose components are zero except possibly for the diagonal components?
4. What is the dimension of the space of symmetric 2×2 matrices, i.e., 2×2 matrices such that $A=A^{\mathrm{T}}$? (Recall that the transpose A^{T} of a matrix A is defined by $\left(A^{\mathrm{T}}\right)_{i j}=A_{j i}$.) Exhibit a basis for this space.
5. Consider the vector space of all functions of a variable t. Show that the following pairs of functions are linearly independent. (a) $1, t$ (b) $t, t^{2} \quad$ (c) $\mathrm{e}^{t}, t \quad$ (d) $\sin t, \cos t$.
6. What are the coordinates of the function $f(t)=3 \sin t+5 \cos t$ with respect to the basis $\{\sin t, \cos t\}$?
7. What are the dimensions of the vector spaces spanned by the following sets of vectors (they are given in Cartesian form)?
(a) $\left\{(1,1)^{\mathrm{T}},(1,2)^{\mathrm{T}}\right\}$
(b) $\left\{(1,0)^{\mathrm{T}},(1,0)^{\mathrm{T}}\right\}$
(c) $\left\{(1,1,2)^{\mathrm{T}},(-2,0,1)^{\mathrm{T}},(-1,1,3)^{\mathrm{T}}\right\}$
(d) $\left\{(1,1,1,1)^{\mathrm{T}},(1,-1,1,-1)^{\mathrm{T}},(1,1,-1,-1)^{\mathrm{T}},(1,-1,-1,1)^{\mathrm{T}}\right\}$
(e) $\left\{(1,2,3)^{\mathrm{T}},(1,-2,1)^{\mathrm{T}},(4,1,4)^{\mathrm{T}},(4,5,6)^{\mathrm{T}}\right\}$

If the number of vectors is greater than the dimension, choose some of them to form a set of basis vectors and express the remaining vectors as linear combinations of them. Which of the bases are orthogonal?
*8. $\quad\left|v_{1}\right\rangle, \ldots,\left|v_{m}\right\rangle$ is a list of linearly dependent vectors with $\left|v_{1}\right\rangle \neq 0$. Show that:
(a) there exists at least one j between 2 and m such that $\left|v_{j}\right\rangle \in \operatorname{span}\left(\left|v_{1}\right\rangle, \ldots,\left|v_{j-1}\right\rangle\right)$;
(b) if we choose k to be the smallest index such that $\left|v_{k}\right\rangle \in \operatorname{span}\left(\left|v_{1}\right\rangle, \ldots,\left|v_{k-1}\right\rangle\right)$ then the vectors $\left|v_{1}\right\rangle, \ldots,\left|v_{k-1}\right\rangle$ are linearly independent.
*9. Recall that $|v\rangle$ is an eigenvector of the operator A with eigenvalue λ if $A|v\rangle=\lambda|v\rangle$. Suppose that λ_{1}, \ldots, λ_{m} are distinct eigenvalues of A and $\left|v_{1}\right\rangle, \ldots,\left|v_{m}\right\rangle$ are the corresponding eigenvectors. Show that $\left|v_{1}\right\rangle$, $\ldots,\left|v_{m}\right\rangle$ are linearly independent.

Inner product, orthogonality

10. Let $\vec{a}_{1}, \ldots, \vec{a}_{n}$ be vectors in \mathbb{R}^{n} and assume that they are mutually perpendicular (i.e., any two of them are orthogonal) and none of them is equal to 0 . Prove that they are linearly independent.
11. Find real values α and β such that the complex vectors $\mathbf{u}=\alpha\binom{1+\mathrm{i}}{1-\mathrm{i}}$ and $\mathbf{v}=\beta\binom{1-\mathrm{i}}{1+\mathrm{i}}$ are normalised. What is the value of the scalar product $\mathbf{u}^{\dagger} \cdot \mathbf{v}$? Prove that \mathbf{u} and \mathbf{v} are linearly independent. Are there any further linearly independent two-dimensional complex vectors? If so, find the necessary vectors to make an orthogonal basis. Express the vector $\binom{1}{i}$ as a linear combination of the basis vectors.
12. Prove the Triangle Inequality: given a norm $\||\mathbf{a}\rangle \|=\sqrt{\langle\mathbf{a} \mid \mathbf{a}\rangle}$ defined through the inner product $\langle\cdot \mid \cdot\rangle$ we have for any two vectors $|\mathbf{v}\rangle$ and $|\mathbf{w}\rangle$ in a linear vector space

$$
\begin{equation*}
\||\mathbf{v}\rangle+|\mathbf{w}\rangle\|\leq\||\mathbf{v}\rangle\|+\||\mathbf{w}\rangle \| . \tag{Q12.1}
\end{equation*}
$$

13. Construct a third vector which is orthogonal to the following pairs and normalise all three vectors.
(a) $(1,2,3)^{T},(-1,-1,1)^{T}$
(b) $(1+\mathrm{i} \sqrt{3}, 2,1-\mathrm{i} \sqrt{3})^{T},(1,-1,1)^{\mathrm{T}}$

* $($ c $)(1-\mathrm{i}, 1,3 \mathrm{i})^{\mathrm{T}},(1+2 \mathrm{i}, 2,1)^{\mathrm{T}}$.

14. Using the Gram-Schmidt procedure construct an orthonormal set of vectors from the following:
$\vec{x}_{1}=(0,0,1,1)^{\mathrm{T}}, \quad \vec{x}_{2}=(1,0,-1,0)^{\mathrm{T}}, \quad \vec{x}_{3}=(1,2,0,2)^{\mathrm{T}}, \quad \vec{x}_{4}=(2,1,1,1)^{\mathrm{T}}$.
15. Consider the vector space of continuous, complex-valued functions on the interval $[-\pi, \pi]$. Show that

$$
\begin{equation*}
\langle\mathbf{f} \mid \mathbf{g}\rangle=\int_{-\pi}^{\pi} \mathrm{d} t f^{\star}(t) g(t) \tag{Q15.1}
\end{equation*}
$$

defines a scalar product on this space. Are the following functions orthogonal with respect to this scalar product? (a) $\sin t, \cos t(\mathrm{~b}) \exp (\mathrm{i} n t), \exp (\mathrm{i} k t), n, k$ integers (c) t^{2}, t^{4}.
16. Let $S(\mathbf{a}, \mathbf{b})=\mathbf{a}^{\dagger} M \mathbf{b}$, where M is a matrix. What conditions do we need to impose on M if $S(\mathbf{a}, \mathbf{b})$ is to define a scalar product between the vectors \mathbf{a} and \mathbf{b} ?
17. Let \mathcal{V} be the real vector space of all real symmetric $n \times n$ matrices and define the scalar product of two matrices A, B by

$$
\begin{equation*}
\langle A \mid B\rangle=\operatorname{tr}(A B) \tag{Q17.1}
\end{equation*}
$$

where $\operatorname{tr} A$ denotes the trace of A (i.e., the sum of the diagonal elements). Show that this indeed fulfills the requirements of a scalar product.

