Mathematical Methods MT2011: Problems 1

John Magorrian, magog@thphys.ox.ac.uk

(mostly recycled from Fabian Essler's MT2009 problems)

Linear independence, dimension, bases

- Show that the space of 2×2 matrices is a linear vector space. What is its dimension? Give a basis for 1. this space.
- 2. What is the dimension of the space of $n \times n$ matrices? Give a basis for this space.
- What is the dimension of the space of $n \times n$ matrices all of whose components are zero except possibly 3. for the diagonal components?
- What is the dimension of the space of symmetric 2×2 matrices, i.e., 2×2 matrices such that $A = A^{T}$? 4. (Recall that the transpose A^{T} of a matrix A is defined by $(A^{T})_{ij} = A_{ii}$.) Exhibit a basis for this space.
- Consider the vector space of all functions of a variable t. Show that the following pairs of functions are 5. linearly independent. (a) 1, t (b) t, t^2 (c) e^t , t (d) $\sin t$, $\cos t$.
- 6. What are the coordinates of the function $f(t) = 3 \sin t + 5 \cos t$ with respect to the basis $\{\sin t, \cos t\}$?
- 7. What are the dimensions of the vector spaces spanned by the following sets of vectors (they are given in Cartesian form)?

 - Cartesian form): (a) $\{(1,1)^{T}, (1,2)^{T}\}$ (b) $\{(1,0)^{T}, (1,0)^{T}\}$ (c) $\{(1,1,2)^{T}, (-2,0,1)^{T}, (-1,1,3)^{T}\}$ (d) $\{(1,1,1,1)^{T}, (1,-1,1,-1)^{T}, (1,1,-1,-1)^{T}, (1,-1,-1,1)^{T}\}$ (e) $\{(1,2,3)^{T}, (1,-2,1)^{T}, (4,1,4)^{T}, (4,5,6)^{T}\}$

If the number of vectors is greater than the dimension, choose some of them to form a set of basis vectors and express the remaining vectors as linear combinations of them. Which of the bases are orthogonal?

- *8. $|v_1\rangle, \ldots, |v_m\rangle$ is a list of linearly dependent vectors with $|v_1\rangle \neq 0$. Show that:
 - (a) there exists at least one j between 2 and m such that $|v_j\rangle \in \text{span}(|v_1\rangle, \dots, |v_{j-1}\rangle)$;
 - (b) if we choose k to be the smallest index such that $|v_k\rangle \in \text{span}(|v_1\rangle, \dots, |v_{k-1}\rangle)$ then the vectors $|v_1\rangle, ..., |v_{k-1}\rangle$ are linearly independent.

*9. Recall that $|v\rangle$ is an eigenvector of the operator A with eigenvalue λ if $A|v\rangle = \lambda |v\rangle$. Suppose that $\lambda_1, ...,$ λ_m are distinct eigenvalues of A and $|v_1\rangle$, ..., $|v_m\rangle$ are the corresponding eigenvectors. Show that $|v_1\rangle$, $\dots, |v_m\rangle$ are linearly independent.

Inner product, orthogonality

- 10. Let $\vec{a}_1, \ldots, \vec{a}_n$ be vectors in \mathbb{R}^n and assume that they are mutually perpendicular (i.e., any two of them are orthogonal) and none of them is equal to 0. Prove that they are linearly independent.
- 11. Find real values α and β such that the complex vectors $\mathbf{u} = \alpha \begin{pmatrix} 1+i\\ 1-i \end{pmatrix}$ and $\mathbf{v} = \beta \begin{pmatrix} 1-i\\ 1+i \end{pmatrix}$ are normalised. What is the value of the scalar product $\mathbf{u}^{\dagger} \cdot \mathbf{v}$? Prove that \mathbf{u} and \mathbf{v} are linearly independent. Are there any further linearly independent two-dimensional complex vectors? If so, find the necessary vectors to make an orthogonal basis. Express the vector $\begin{pmatrix} 1 \\ i \end{pmatrix}$ as a linear combination of the basis vectors.
- 12. Prove the **Triangle Inequality**: given a norm $|||\mathbf{a}\rangle|| = \sqrt{\langle \mathbf{a} | \mathbf{a} \rangle}$ defined through the inner product $\langle \cdot | \cdot \rangle$ we have for any two vectors $|\mathbf{v}\rangle$ and $|\mathbf{w}\rangle$ in a linear vector space

$$\||\mathbf{v}\rangle + |\mathbf{w}\rangle\| \le \||\mathbf{v}\rangle\| + \||\mathbf{w}\rangle\|. \tag{Q12.1}$$

- 13. Construct a third vector which is orthogonal to the following pairs and normalise all three vectors.

(a) $(1,2,3)^T$, $(-1,-1,1)^T$ (b) $(1+i\sqrt{3},2,1-i\sqrt{3})^T$, $(1,-1,1)^T$ *(c) $(1-i,1,3i)^T$, $(1+2i,2,1)^T$.

- 14. Using the Gram–Schmidt procedure construct an orthonormal set of vectors from the following: $\vec{x}_1 = (0, 0, 1, 1)^{\mathrm{T}}, \quad \vec{x}_2 = (1, 0, -1, 0)^{\mathrm{T}}, \quad \vec{x}_3 = (1, 2, 0, 2)^{\mathrm{T}}, \quad \vec{x}_4 = (2, 1, 1, 1)^{\mathrm{T}}.$
- 15. Consider the vector space of continuous, complex-valued functions on the interval $[-\pi,\pi]$. Show that

$$\langle \mathbf{f} | \mathbf{g} \rangle = \int_{-\pi}^{\pi} \mathrm{d}t \, f^{\star}(t) g(t) \tag{Q15.1}$$

defines a scalar product on this space. Are the following functions orthogonal with respect to this scalar product? (a) $\sin t$, $\cos t$ (b) $\exp(int)$, $\exp(ikt)$, n, k integers (c) t^2 , t^4 .

- 16. Let $S(\mathbf{a}, \mathbf{b}) = \mathbf{a}^{\dagger} M \mathbf{b}$, where M is a matrix. What conditions do we need to impose on M if $S(\mathbf{a}, \mathbf{b})$ is to define a scalar product between the vectors \mathbf{a} and \mathbf{b} ?
- 17. Let \mathcal{V} be the real vector space of all real symmetric $n \times n$ matrices and define the scalar product of two matrices A, B by

$$\langle A|B\rangle = \operatorname{tr}(AB),\tag{Q17.1}$$

where tr A denotes the trace of A (i.e., the sum of the diagonal elements). Show that this indeed fulfills the requirements of a scalar product.