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SECOND PUBLIC EXAMINATION
Honour School of Physics Part A: 3 and 4 Year Courses

Honour School of Physics and Philosophy Part A

A3: QUANTUM PHYSICS

TRINITY TERM 2013

Friday, 14 June, 9.30 am — 12.30 pm

Answer all of Section A and three questions from Section B.

For Section A start the answer to each question on a fresh page.
For Section B start the answer to each question in a fresh book.

- A list of physical constants and conversion factors accompanies this paper.
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The numbers in the margin indicate the weight that the Examiners expect to
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Do T turn over until told that you may do so.
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Section A

2
1. If H is a Hermitian operator, how are (¢|H|v) and (Y|H |¢).rel.ated. Sh;)vtvh.t h?'t
the eigenvalues of a Hermitian operator are real and explain the 51gr.11ﬁ.cance. O ;ls s
quantum mechanics. Show that the eigenstates corresponding to diSUTICHEICCIVA EE8 [5]

are orthogonal.

2. A particle of mass m is in the ground state of the potential V(z)=0for0<z<a
and V(z) = oo elsewhere. The potential is suddenly changed to V(z) = 0 for 0 < = < 2a
and V(z) = oo elsewhere. What is the probability that the particle remains in the
ground state? (6]

3. Suppose, instead, that the potential well in Question 2 is changed slowly fro.n.1 2
width a to a width 2a. Over what time scale must the change occur if the probability
that the particle remains in the ground state is to stay close to 17 [5]

4. For a wavefunction ¥ = 1(r) describing particles of mass m, the probability ‘
current density is given by

g AT Pl .
j 2mi[¢V¢—¢\7¢]o

Show that for the general wavefunction with uniform probability density, ¥(r) = A exp[ig(r)],
j is proportional to the gradient of ¢ and find the constant of proportionality. Hence
or otherwise, find the wavefunction representing wm probability density of one
article per unit volume and a uniform probability current density of p/m. 6
particle per unit : p y y of p/ 6]

5. What does the Operé,tor

| Io)alde

represent? A state |) in the position representation is given by (z[y)) = a/2 for
—a < z < a and (z|y) = 0 elsewhere. Taking

= —l—ex e
 what is (p[y) ? 7

S

6. Show that any trial state [¢)) has an expectation energy that is at least as high as
“,4,} ground state of the Hamiltonian H. 4]

Using a (normalised) trial wave function of the form 9(x) = (a/ 7r)% exp(—az?/2),

o

at the expectation value of the energy of a particle moving in the potential
9 is i
' 3

(E)(a) =aa+ Pa”2

nstants a Q,B
therwise find an upper bound for the ground state energy of the particle.

[7]



Section B

7. The electron in a hydrogen-like ion has a Hamiltonian

Zc<Rl
2m 4meg T

and eigenstates |n,l,m).
(a) Explain the origin of each term in the Hamiltonian, and the meaning of each of
the quantum numbers n, [ and m. On which quantum number does the energy depend?

For n = 2, what values may [ and m take? 4]
(b) By considering the electric dipole selection rules or otherwise, identify which
of the matrix elements (2,1’,m’|z|2,1, m) are non-zero. [4]

(c) A small static electric field of strength £ is applied in the z direction. Write
down the perturbation Hamiltonian. Calculate its non-zero matrix elements for the

basis of states with n = 2. [6]
(d) Identify the linear combinations of the n = 2 states that diagonalise the
perturbation Hamiltonian and calculate the energy shifts. Hence sketch the n = 2
~ energy levels before and after the application of the perturbation. In each case, label

~ the eigenstates and give the magnitude of any energy differences. 6]

. ‘;.1"“'1'{-,. o .
| The integral

~
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described with a basis repre-

o1 : d B, can be :
8. A system of two spin ; particles, A an }. In this basis, a

senting the projections along z, {| tatg), | TalB), | lA.TB% | LadB)
particular operation on spin A is described by the matrix

.0 a0

198 | 01 O S
H"='\/§10—101
ORI RO —

Find the results of operating on the states | 1415) and | LaTg) with Ha. Measurements
of the projections of spins A and B are made on the resulting states. In each case, wh?,t
is the probability of finding spin A pointing up? What is the probability of finding spin
B pointing up? Does the order of the measurements matter for these cases? [8]

Another operation flips the state of spin B if spin A is up and does nothing if
spin A is down. Construct the matrix, Ho representing this operation. Find the reS}llt,
1Y), of operating on | |415) first with H4 and then with Ho. What are the possible

outcomes of measurements of the projections of spin A followed by spin B on state [1)? ‘
What is special about the state [¢)? 9]

For the state |)) what is the projection of the total spin along 2? Does [¢)
represent a singlet state or a component of a triplet? What do you expect for the
outcome of successive measurements of spins A and B along any particular axis? 3]




9. Derive an expression for the rate of change of the expectation value of an operator
(Ehrenfest’s theorem), stating clearly any assumptions that you make. What is a good
quantum number? What is a stationary state?

An apparatus confines a particle of mass m to the (z,y) plane and imposes a

potential

V(z,y) = -]im(wza: +w§y2).

Write down the energy eigenvalues. For the case w; = w, + dw where dw is small
compared to both w, and wy, sketch an energy level diagram showing the lowest six
levels and the quantum numbers.

A modification to the apparatus is made so that w, = w, = w. What new sym-
metry does the system have? What are the consequences for the energy level diagram?
By considering what quantity should be conserved under the new symmetry, identify
a new good quantum number and write down the corresponding differential operator.
- Verify using Ehrenfest’s theorem that the expectation value of this operator is time-
~ independent.

- Wnrite down the wavefunctions of the lowest three energy eigenstates that are also
eigenstates of the new operator. (There is no need to normalise them.)
R

1ay use thout proof the results that for a particle of mass m in a one

oy
sntial ﬁ ;mcﬂ:z:z the energy eigenvalues are (n + 2)f'u.u where

int. Tg d the eigenfunctions for n = 0 and n = 1 are, respec-
ir'af-j:, and A ze (—mwz2/2h) ]

[5]

[7]
3]




10. X is the operator that exchanges the particles in a two-particle system. By con-
sidering wavefunction for two spinless particles (21, 22);

(i) find the eigenvalues of X’; 2 :
(i) show that for general operators A and B, if YAX = B, then XAX = B~.

Show that X commutes with the operator for the total kinetic energy, K =
ﬁ%/ 2my + p5/2mo, as long as the masses of the two particles are the same. [Hint:
consider YK X and use the result that XCyX = Cp where C1 and Cj represent any

single-particle operator acting on the first and second arguments of the wavefunction
respectively.] [6]

The potential energy may contain terms acting on each particle (Vi(z1) and
Va(z2)) and interaction terms Vi (z,zs). Give conditions on V4, V5 and Vy under which
X' commutes with the total potential energy (and hence the Hamiltonian, if the masses
are the same). [3]

A particle in a particular one-dimensional potential has orthonormal bound states
u(z) and v(z) with energies E, and E, respectively. A second identical particle, which
does not interact with the first, is introduced such that one particle resides in each
of the states. Write down the exchange symmetric and antisymmetric two-particle
states with total energy F = E, + E,. Show that when a small interaction potential
Vi(|zy —x2]) is turned on, the expectation values for the energies of these states become
E, + E, + Jp £ Jg. Give integral expressions for Jp and Jg. [7]

R For the case where the interaction potential VJ is extremely short-range, and given
s S by Vi = Vod(z; — x3), how are the perturbed energy levels related to the unperturbed
- energy levels? Explain the result. [4]
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