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SECOND PUBLIC EXAMINATION

Honour School of Physics Part A: 3 and 4 Year Courses

Honour School of Physics and Philosophy Part A

Al: THERMAL PHYSICS

TRINITY TERM 2013

Wednesday, 12 June, 9.30 am — 12.30 pm

Answer all of Section A and three questions from Section B.

For Section A start the answer to each question on a fresh page.
For Section B start the answer to each question in a fresh book.

A list of physical constants and conversion factors accompanies this paper.

The numbers in the margin indicate the weight that the Ezaminers expect to
assign to each part of the question.
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For any closed cycle ¢ QTQ < 0, where the equality necessarily holds for reversible cycle

1. The Clausius inequality states:

Define the symbols dQ and 7. Write down the thermodynamic definition of entropy

and, starting from the Clausius inequality or otherwise, show that it 1s a function of 5]
state. -
ik JBZ G dT
e feSdIT S

T 2. (a) 1 kg of silver at 0°C is brought into contact with a large heat reservoir at
100°C. When the silver has reached 100°C what is the change in the entropy of (i) the
silver, (ii) the reservoir, and (iii) the universe?

(b) If, instead, the silver is heated from 0°C to 100°C by operating a reversible

heat engine between the silver and the reservoir, what is now the change in the entropy
of (i) the silver, (ii) the reservoir, and (iii) the universe? [6]
J ( | — \< c\)()

[The specific heat of silver is 2.3 x 102 J kg~! K—1)] -
CAD
dx =

3. The probability that a molecule in a dilute gas undergoes a colhsmn in a small

distance dz is k dx with k constant. Show that the probability that a molecule has not
collided after travelling a distance z is dx el deiE,

')

s
p(xz) = e7** @R i
and relate k£ to the mean free path of the gas. State a typical value of the mean free
path for a molecule in air at room temperature and atmospheric pressure. 42 — < J/Cl v 7]
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4. Use kinetic theory to obtain an expression for the pressure (force per unit length

b exerted on a line) of an isotropic, two-dimensional gas in terms of an appropriate average
T T  over the velocity distribution. (6]

5. A two-level system has energy levels 0 and A. Draw a carefully labelled sketch of
(i) the 1 nean energy and (ii) the specific heat as a function of temperature. 6]

a1l the solar ' power falling on earth was absorbed by the oceans, estimate how

&_‘

ould ke f a)_sv them to evaporate, stating the assumptions you make.
wa er is 4.2 x 10° J kg=! K~! and the latent heat of water is

‘he solar constant, defined as the solar power per unit area, at a
al to the radius of the earth’s orbit, is 1370 Wm ™2 ] 5]

ndom from inside the sphere =2 + y? + 22 = 1. r is the
| the mean and variance of 7.

[5]



Section B

8. State the theorem of equipartition of energy, explaining what is meant by the

classical limit.

Show that the single particle partition function describing the translational motion
of a perfect, classical gas of molecules of mass m occupying a volume V' at temperature

S

kaT) 3/2

I V( omh?

Derive an expression for the mean kinetic energy of a gas molecule and relate your

answer to the equipartition theorem.

A quantum harmonic oscillator has energy levels (n+%)ﬁw, n=0,1,2.... Derive
a formula for the mean energy of the oscillator, F, in terms of z = hw’cBT. State the
condition on z for which the equipartition theorem holds, and find E in this limit.

';) Explain why the high temperature specific heat of an insulating solid is close to
3R per mole. Suggest physical effects that might lead to deviations from this value as

the temperature is increased.

4

. One mole of a van der Waals gas has an equation of state
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(P + %)(V—b) —RT
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here P. V. n_gﬁﬂ '9_. the pressure, volume and temperature of the gas.
why the van der Waals equation of state is often a better model of a real
he perfect gas equation of state, including the motivation for introducing the

4

B
f the van der Waals gas on a P-V diagram, labelling the
hase coexistence region. Explain what would happen to a
1 at a pressure and volume lying within the coexistence

volume and temperature at the critical point

of T and V, or otherwise, show that
it pressure and constant volume is

n i Do

3]
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he mean occupation num-

10. Starting from the grand partition function, show that t :
tt/{l 2 Z/Jgj .

ber of a non-interacting Bose gas 1S

o IR
1 ¢ or-
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and that, as long as the temperature is not too low, the number density of the bosons

can be written

V.  4r2ps

N  (2m)3/? /°° el/? de (1)
Ble-p) — 1
i 6]

State how the value of the chemical potential changes as the gas is cooled at
constant density. Hence, or otherwise, argue that equation (1) can no longer hold below
a temperature 7. given by

iF \”? N (kaTc)3/2
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h““ei‘é C is a numerical factor that you need not evaluate.

S0

‘]"@ L (Tc, derive an expression for the number density of particles in the ground
tate of ’4"'(‘3» DSE ;gas.., r5]

ion g(z) which is equal to unity between
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