
Problem Set 3. General Relativity, HT17

Birkhoff Theorem and Radiation

Affine connection for diagonal gµν :

Γλµν =
1

2gλλ

(
∂gλµ
∂xν

+
∂gλν
∂xµ

− ∂gµν
∂xλ

)
NO SUM OVER λ

Ricci Tensor:

Rµκ =
1

2

∂2 ln |g|
∂xκ∂xµ

−
∂Γλµκ
∂xλ

+ ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln |g|
∂xη

FULL SUMMATION

N.B.: In this problem set, we will set c = 1.

1a.) The Birkhoff theorem states that outside of a spherical distribution of matter, the metric
tensor must be independent of time and equal to the Schwarzschild metric. A corollary is
that in the hollow of a spherical distribution of matter, the metric tensor is Minkowski space-
time. These are the Newtonian analogues of a point mass 1/r potential anywhere outside a
spherical distribution of matter, and the vanishing of the gravitational field inside a spherical
cavity in a spherical system. Birkhoff’s theorem is critical to formulating cosmology.

To prove the theorem is straightforward but painful, because we need to calculate the Ricci
tensor Rµκ, and that is always a nuisance. But Birkhoff’s theorem is very important, so here
we will go through its main step. (You can then fill in the rest at your leisure using Weinberg
as your guide, if you so choose.)

Consider the line element for a general time-dependent spherical system,

−dτ 2 = −B(r, t)dt2 + A(r, t)dr2 + r2dθ2 + r2 sin2 θdφ2 ≡ gµνdx
µdxν

Evaluating the nonvanishing affine connection components Γabc from the metric tensor gµν , it
is not difficult to show that we recover precisely the set we found for Schwarzschild in equation
(252)—do this later if you’d like convincing—plus three others that were zero before. Do
this bit now. Show that, in particular,

Γrrt =
Ȧ

2A
, Γtrr =

Ȧ

2B
Γttt =

Ḃ

2B

where we will use notation Ȧ for a time derivative and A′ for an r derivative. These three
are the new members of our affine connection set.

1b.) We will now show that Rtr = −Ȧ/rA, which sure looks simple but in fact involves a
large cancellation. The point now is that since all the Rµκ terms must vanish in a vacuum,

Ȧ = 0, and A cannot depend on time. The other components of the Ricci tensor then all
revert back to their Schwarzschild forms. (We won’t show this explicitly, only because it is a
long and dull exercise, but it is not particularly difficult). Thus, B doesn’t depend on time
either. This is Birkoff’s theorem.
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Using the Ricci tensor above, show that the first two groupings

1

2

∂2 ln |g|
∂xκ∂xµ

−
∂Γλµκ
∂xλ

cancel one another out precisely. This is progress. (g is the determinant of gµν .)

1c.) Show next that for Rµκ = Rtr,

ΓηµλΓ
λ
κη −

Γηµκ
2

∂ ln |g|
∂xη

= − Ȧ

rA

(Use [252] from the notes for any Γ’s you need, or Weinberg [8.1.11].) You will find that
everything cancels once again, except for one final term in the ln |g| derivative, shown on the
right. With Ȧ = 0, Birkhoff’s theorem follows relatively easily, as the remaining Rµκ = 0
equations reduce to the Schwarzschild problem.

2.) Desert island GR. Here we will construct a linear, weak field theory gravity from scratch.
Then we will construct GR from scratch! (Well, practically.)

Imagine that it is 1912. Minkowski has formulated the concept of his spacetime geometry
(1908). Einstein has had his happy (1907) Equivalence Principle thought, and has just un-
derstood that gravity is a Riemannian geometric theory of a distorted Minkowski spacetime,
and that the name of the game is to relate the coordinate derivatives of gµν to Tµν . But he
knows nothing more. Let’s help him out.

2a.) Our weak gravity field equation will need, on the left (curvature) side, a sum of second
derivatives of gµν . More conveniently, we use derivatives of the small quantity hµν = gµν−ηµν .
Not only is the background spacetime geometry flat Minkowski, our coordinates are very close
to Cartesian. So, with h ≡ hρρ, there are but five combinations that could possibly appear:

�hµν , ∂µ∂νh, (∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ), ηµν�h, ηµν∂ρ∂λh

ρλ

(� ≡ ∂ρ∂ρ. We use the handy notation ∂µ = ∂/∂xµ, ∂µ = ∂/∂xµ, and raise and lower indices
on hµν with ηρµ.) Justify this statement and explain fully.

2b.) We accordingly search for an equation of the form:

�hµν + α(∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ) + β∂µ∂νh+ ηµν(γ�h+ δ∂ρ∂λh

ρλ) = CTµν

where α, β, γ, δ and C are constants to be determined. You remember, of course, the stress
tensor Tµν , now in Newtonian guise. We demand that ∂µTµν = 0 as an identity. What is the
reason for this? Show that α = −1, δ = 1, γ = −β follow:

�hµν − (∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ) + β∂µ∂νh− ηµν(β�h− ∂ρ∂λhρλ) = CTµν

2c.) By taking the trace of this last equation and using T00 � Tii (valid in the Newtonian
limit — why?), show that

∂ρ∂λh
ρλ =

3β − 1

2
�h− CT00

2
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Be careful with signs and up-down indices.

2d.) Taking the static Newtonian limit of the (2b) final equation, show that

∇2h00 +
1− β

2
∇2h =

C

2
T00

where ∇2 is the usual Laplacian operator. Explain why this implies β = 1 and C = −16πG:

�hµν − (∂ρ∂µh
ρ
ν + ∂ρ∂νh

ρ
µ) + ∂µ∂νh− ηµν(�h− ∂ρ∂λhρλ) = −16πGTµν

Compare this with equations (339), (340) and (348) in the notes and comment.

2e.) Given that the Ricci tensor Rµν and gµνR
ρ
ρ are the only second rank tensors that are

linear in the second derivatives of the metric tensor gµν when the curvature is weak, explain
why the general field equations must take the form

Rµν −
gµνR

2
= −8πGTµν

where R ≡ Rρ
ρ. Notice: not a Bianchi identity in sight. If Einstein could only have seen this

in 1912.

3a.) Coordinate sinuosities, the speed of gravitational radiation, and the harmonic gauge.
Recall the linear fully covariant curvature tensor:

Rλµνκ =
1

2

(
∂2hλν
∂xκ∂xµ

− ∂2hµν
∂xκ∂xλ

− ∂2hλκ
∂xµ∂xν

+
∂2hµκ
∂xν∂xλ

)
.

For a plane wave of the form hµν = Aµν exp(ikρx
ρ) travelling in vacuum, show that

Rλµνκ =
1

2
(−kκkµhλν + kκkλhµν + kµkνhλκ − kνkλhµκ)

and that the linear vacuum field equation is

kκk
ρh̄ρµ + kµk

ρh̄ρκ − k2hµκ = 0

where h̄µν = hµν − ηµνh/2 and k2 = kρkρ. We do not yet assume that k2 = 0, but shall try
to deduce this.

3b.) Show that if k2 6= 0 then Rλµνκ = 0. Yikes! No curvature. A mere coordinate sinuosity
propagating at the speed of thought.

3c.) Finally, show that if we consider only disturbances propagating at the speed of light,
then we must have kρh̄ρσ = 0. In other words, the harmonic gauge condition must be
satisfied. You want gravitational radiation to travel at the speed of light and to actually
produce curvature? No choice: use a harmonic gauge.

4.) Radiation from a parabolic fly by. The Peters—Mathews formula for the time-averaged
gravitational wave luminosity of a binary system in an elliptical orbit (with semi-major axis

3



a, masses m1 and m2, M ≡ m1 + m2, eccentricity e) is given by (c is now back in the
equation):

〈LGW 〉 =
32

5

G4

c5
m2

1m
2
2M

a5

[
1 + (73/24)ε2 + (37/96)ε4

(1− ε2)7/2

]
It’s derivation is outlined in the notes (§7.7), or you may take it on perfect good faith from
your humble instructor, however startling it may seem. Using this result, show that the total
gravitational wave energy emitted by a single parabolic encounter between two bodies is

EGW =
85π
√

2

24

G7/2M1/2m2
1m

2
2

c5b7/2

where b is radius of closest approach. Recall that for a parabolic orbit, the radius r and
aximuth φ are related by r(1 + cosφ) = L, where L = a(1− ε2) is the “semi-latus rectum,”
a constant. A parabola corresponds to the ε→ 1 limit, with a(1− ε2) = L finite. You may
find the material in §6.7.1 useful.
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