
Problem Set 1. General Relativity, HT17

THE SIGN OF THE FOUR: COORDINATES, 4-VECTORS and TENSORS

“That’s its business,” said Lambert. “If Balbus says it’s the same bulk, why, it’s the same bulk,
you know.”

“Well, I don’t believe it,” said Hugh.

“You needn’t,” said Lambert. “Besides, it’s dinner-time. Come along.” They found Balbus
waiting dinner for them, and to him Hugh at once propounded his difficulty.

“Let’s get you helped first,” said Balbus, briskly cutting away at the joint. “You know the old
proverb, ‘Mutton first, mechanics afterwards’?”

The boys did not know the proverb, but they accepted it in perfect good faith, as they did every
piece of information, however startling, that came from so infallible an authority as their tutor.
They ate on steadily in silence, and, when dinner was over, Hugh set out the usual array of pens,
ink, and paper, while Balbus repeated to them the problem he had prepared for their afternoon’s
task.

— Excerpt from A Tangled Tale, by Lewis Carroll

1.) Consider the following thought:

“Special relativity holds for frames moving at constant relative velocity, but of course
acceleration requires general relativity because the frames are noninertial.”

Ineffable twaddle. Special relativity certainly doesn’t cower before simple kinematical ac-
cleration. On the other hand, acceleration, even just uniform accleration in one dimension,
is not without its connections with general relativity. We shall explore some of them here.
For ease of notation, we set c = 1. In part (d) we’ll put c back.

1a.) Let us first ask what we mean by “uniform acceleration.” After all, a rocket approaching
the speed of light c can’t change its velocity at a uniform rate forever without exceeding c at
some point. Go into the frame moving instantaneously at velocity v with the rocket relative
to the “lab.” The instantaneous rocket velocity, v′, vanishes in this frame. Wait a time dt′

later, as measured in this frame. The rocket now has velocity dv′ in this same frame. What
we mean by constant acceleration is dv′/dt′ ≡ a′ is constant. The acceleration measured in
the lab is certainly not constant! The question is, how is the lab acceleration a = dv/dt
related to the constant a′?

To answer this, let V = v/
√

1− v2, the spatial part of the 4-vector V α associated with
the ordinary velocity v. The same relation holds for V ′ and v′. Assume for the moment
that the primed and unprimed frames differ by some arbitrary velocity w. The 4-velocity
differentials are given by:

dV ′ = (dV − w dV 0)/
√

1− w2

where V 0 = 1/
√

1− v2. Explain.

1b.) Now, set w = v. We thereby go into the frame in which v′ = 0; the rocket is instanta-
neously at rest. Prove that dv = dv′(1− v2). (Remember, v and v′ are ordinary velocities.)
From here, prove that

dv

dt
= a′(1− v2)3/2.
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1c.) Show that, starting from rest at t = t′ = 0,

v =
a′t√

1 + a′2t2
, a′t = sinh(a′t′),

and hence show that (for x = 0 at t = t′ = 0):

v = tanh(a′t′), x =
1

a′
[cosh(a′t′)− 1]

Do your own integrals!

1d.) Let’s use these results to construct a full coordinate transformation from the lab frame
x, t to the accelerating x′, t′ frame. We guess a transform of the form

t = A sinh(a′t′) +B, x = A cosh(a′t′) + C

where A, B, and C depend only upon x′. Then on x′ = constant surfaces, dx/dt =
tanh(a′t′) = v, which is indeed what we need. Prove that if i) surfaces of constant t′

are surfaces of constant time in a frame moving instantaneously at v, and ii) t matches with
t′ at early times and small x′, while x self-consistently agrees with x′ at early times, then
this uniquely determines A, B, and C. Put the speed of light c back into the equations, and
show that

ct =

(
c2

a′
+ x′

)
sinh(a′t′/c), x =

(
c2

a′
+ x′

)
cosh(a′t′/c)− c2

a′

1e.) Show that for the invariant Minkowski line element

c2dτ 2 = c2dt2 − dx2 =

(
1 +

a′x′

c2

)2

c2dt′2 − dx′2

Provide a physical interpretation of your result in terms of gravitational redshift.

2.) Recognising tensors. One way to prove that something is a vector or tensor is to show
explicitly that it satisfies the coordinate transformation laws. This can be a long and arduous
procedure if the tensor is complicated. There is another way.

Show that if Vν is an arbitrary covariant vector and the combination T µνVν is known to be
a contravariant vector (note the free index µ), then(

T ′µν − T λσ ∂x
′µ

∂xλ
∂x′ν

∂xσ

)
V ′ν = 0

Why does this prove that T µν is a tensor? Does your proof actually depend on the rank of
the tensors involved?

3.) What about d2xµ/dτ
2? The geodesic equation in standard form gives us an expresssion

for d2xµ/dτ 2 in terms of the affine connection, Γµνλ. For the covariant coordinate xµ, show
that

d2xµ
dτ 2

=
1

2

dxν

dτ

dxρ

dτ

∂gνρ
∂xµ
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(Hint: start with the standard geodesic equation for d2xµ/dτ 2, call it dV µ/dτ , multiply by
Vµ ≡ dxµ/dτ , and take it from there.) Under what conditions is V0 ≡ Vt a constant of the
motion?

4.) Hydrostatic Equilibrium in GR. Model a neutron star atmosphere with a simple equation
of state: P = Kργ, where P is pressure, ρ is mass density, γ is the adiabatic index and K
is a constant. Assume that g00 = −(1 − 2GM/rc2), where M is the mass of the star and r
is radius. If ρ = ρ0 at the surface r = R0, solve the equation of hydrostatic equilibrium to
show that

1 +Kργ−1/c2

1 +Kργ−10 /c2
=

(
1−RS/r0
1−RS/r

)α
where RS = 2GM/c2 is the so-called Schwarzschild radius, and 2αγ = γ−1. (Hint: See §4.6
of the notes.) What is the Newtonian limit of the above equation? Express your answer in
terms of the speed of sound a, a2 = γP/ρ and the potential Φ(r) = −GM/r.

5.) Bondi Accretion: go with the flow. To get some more practise working with the equations
of GR, consider the problem of Bondi Accretion, the (exactly) spherical flow of gas into a
black hole. Here we take the diagonal metric gµν as known. Later in the course we will
derive gµν for a simple black hole, and build on the results we find here.

5a.) First, let us assume that particles are neither created or destroyed, just to keep things
simple. So particle number is conserved. We use the usual r, θ, φ spherical coordinates. If
n is the particle number density in the local rest frame of the flow, then the particle flux
is Jµ = nUµ, where Uµ is the flow 4-velocity. Justify this statement, and using §4.5 in the
notes, show that if particle number conservation implies:

Jµ;µ = 0.

If nothing depends upon time, show that this integrates to

nU r|g′|1/2 = constant,

where g′ is the determinant of gµν divided by sin2 θ, and U r is...well, you tell me what U r is.

5b.) We move on to energy conservation, T tν;ν = 0. Refer to §4.6 in the notes, as in problem
(4) above. Show that the only nonvanishing affine connection that we need to use is

Γttr = Γtrt =
1

2

∂ ln |gtt|
∂r

Derive and solve the energy equation. Show that its solution may be written

(P + ρc2)U rUt|g′|1/2 = constant

where Ut = gtµU
µ, and ρ is the total energy density of the fluid in its rest frame, including

any thermal energy. These two surprisingly simple equations will be solved in the next
problem set.
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