
    Second Year Physics: Optics Problems    P. Ewart 

 

Questions in shaded boxes are designed to cover the basic “bookwork” on the main topics 

in the course. Thorough understanding of these “simpler” questions should help in tackling 

the other questions which apply these principles and are at the level of Finals Part A. 

 

  1. Two long slits of negligible width, separated by a distance d are illuminated by 

monochromatic light of wavelength  from a point source at a distance s on an axis 

perpendicular to the plane of the slits and mid-way between the slits (Figure 1(a)).  

 

           
Figure 1(a)         Figure 1(b) 

 

By assuming an amplitude uo of light emanating from each slit, calculate the intensity as a 

function of the angle   to the axis at a distance D on the opposite side of the slits from the 

source when D >> d,  

(a) using the analytical method, and  

(b) by the method of phasors.  

(c) What is the angular separation   between the central maximum and the first maximum on 

either side? 

 

A large aperture lens of focal length f, on the axis, is used to form an image of the fringes on a 

screen placed at a distance f from the lens. (Figure 1(b)) 

 

(d) Derive an expression for y, the separation on the screen of the first fringe maximum from the 

central fringe maximum. 

(e) Make a sketch of the interference pattern seen on the screen and indicate quantitatively the 

positions of the principle maxima of the pattern. 

(f) One of the slits is now covered with a thin attenuating film to reduce the amplitude to one 

half that emitted by the uncovered slit. Use either the analytical or phasor method to find the 

angular distribution of the intensity in this case. Sketch the form of the interference pattern seen 

on the screen in this case, on the same axes as for part (e), indicating quantitatively the intensity 

variation in the pattern.  

(g) The film is now replaced by a 0.5 mm thick glass plate of refractive index 1.5 on the input 

side of the slit. Explain quantitatively any change that may occur in the fringe pattern. 

(h) Explain what would happen to the pattern, when both slits are uncovered, if the source is 

moved a distance x perpendicularly from the axis in the plane of the diagram above.  

(i) The original system, with unobstructed slits, is set up with a source emitting light of 

wavelength 500 nm at s = 20 mm from the slits which are separated by d = 0.5 mm. Explain 

what would be observed on the screen if a second, independent i.e. incoherent, source of equal 

intensity was placed beside the original source at a distance x off axis and x is gradually 

increased from zero perpendicularly to the axis. What will be the minimum value of x at which 

fringes can no longer be observed? Estimate the maximum size for a single source, of 

incoherent emitters, if fringes are to be visible. 



 

 

 

 

 

 

 

 

 

 

 

 

 

3.  Calculate the size (i.e. the separation of the first minima on either side of the central 

maximum) of the Fraunhofer diffraction pattern created by collimated monochromatic light of 

wavelength 600 nm transmitted by an infinitely long slit of width 250 microns in the focal plane 

of a lens of focal length 500 mm. 

 

4. The width of a slit, roughly 100 microns, is to be measured by studying its Fraunhofer 

diffraction pattern. Describe how you would carry out this measurement, including in your 

account reasoned order of magnitude estimates. Mention also all of the important experimental 

components, and how they would be used. 

 

5.  The single most important result in physical optics is that a collimated beam of light, of width 

w, has an angular divergence ~w or greater. Use this result to estimate approximately the size 

of the smallest patch of light one can get on the moon when a beam of diameter ~ 20 mm from a 

ruby laser is pointed at it in lunar ranging experiments. Find the new minimum size when the 

laser beam is expanded so as to fill the aperture of a Newtonian telescope having a mirror 

diameter of 3 m.  

 

[The wavelength of the light from a ruby laser may be taken to be 700 nm and the distance from 

the earth to the moon to be 390,000 km.] 

 

6. Viewed through a thin layer of cloud, the Moon sometimes appears to be covered by a 

translucent disk of light of angular diameter 2
o
. The disk is white at its centre but reddish at its 

periphery. Explain this phenomenon and estimate the size of water droplets in the cloud.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

2.  (a) Explain what is meant by Fraunhofer diffraction. [Your answer should contain no 

reference to parallel light or observation at infinity.] Why is it of such great practical 

importance? 

 

Plane waves of monochromatic light of wavelength  fall on a slit of width a:   

 

(b) Estimate the minimum distance from the slit of the plane of observation if the observed 

diffraction pattern is to fulfil the Fraunhofer condition. 

 

(c) Derive an expression for the angular distribution of the intensity in the Fraunhofer pattern, 

and sketch it, indicating the relative distances from the centre to any mimina in intensity. 

 

7. The Fresnel-Kirchoff diffraction integral is, 
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where up is the amplitude of the diffracted wave at position r from the centre of a diffracting 

aperture of area S, in which the amplitude is uo per unit area and the other symbols have their 

usual meanings. Explain the physical significance of the factor 1/r in the integral and the 

quantity ),( rn . Using this integral show that the angular distribution of the Fraunhofer 

diffraction pattern of a single long narrow slit, width a, may be represented by the Fourier 

transform of the amplitude distribution u(x) in the aperture, making clear any assumptions and 

approximations required. x is the dimension transverse to the long axis of the slit. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent 

of x. It is illuminated by coherent, monochromatic light of wavelength λ at normal incidence. 

Show that, in the Fraunhofer case, the diffracted intensity is proportional to |A(θ)|
2
, where 
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Figure 2 (a)  

 

 

Figure 2 (a) shows a particular amplitude transmission function. Calculate and sketch the 

diffracted intensity as a function of sin θ.  

Figure 2 (b)   

 

 

Figure 2 (b) shows another transmission function. Calculate and sketch the diffracted intensity as 

a function of sin θ. Comment on the location of the first zero of the diffracted intensity with 

regard to the spatial-frequency content of T(y). 

8. The amplitude distribution in a slit of width a in the transverse, x, direction may be 

represented by the top-hat function: 
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Find an expression for the Fraunhofer diffraction pattern of such a single slit. 

 

9. State the Convolution Theorem. 

 

Describe quantitatively how an aperture function u(x) representing the amplitude transmission 

of two long slits of width, a, parallel to the y-axis and centred at positions 2/dx  , in the x-

direction and where d >a,  may be represented as a convolution of two simpler functions. 

 

Use the Convolution Theorem to derive an expression for the Fraunhofer diffraction pattern of 

such a pair of slits illuminated by a plane monochromatic wave of wavelength . 



11.  A monochromatic plane wave of wavelength  is incident normally on a screen which 

transmits a fraction x) of the amplitude incident upon it, where x is measured across the screen 

and x)   is given by the Gaussian function  
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Where d is a constant. Sketch this function.  

 

A lens of focal length  f is placed behind the screen. Derive an expression for the intensity 

distribution in the focal plane of the lens. [The point being that you get another Gaussian. This is 

because the amplitude distribution in the Fraunhofer pattern is the Fourier Transform, FT, of the 

transmission function of the screen, and the FT of a Gaussian is another Gaussian. Taking the 

modulus squared still keeps the Gaussian form. But of course you don't need to use FT's 

explicitly to do the question.] 

 

Explain briefly why the use of a screen of this type can be helpful in practice. Suppose the screen 

to be moved to a position beyond the lens, halfway between the lens and its focal plane. What 

would the intensity distribution then be in the focal plane? Would the pattern still be correctly 

described as Fraunhofer? 
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12. 

 
 

A small transmission diffraction grating has width w = 0.25 mm and is composed of 16 narrow 

slits whose centres are spaced by 15 μm. It is situated in the z = 0 plane with its lines oriented 

along the y-direction, where the z-axis is defined to lie along the optical axis of a thin lens of 

focal length f = 2.5 mm and diameter 2w positioned at z = 2f. The grating is parallel to the lens 

but off-axis, extending from x = 0 to x = w. The grating is uniformly illuminated by a parallel 

beam of monochromatic light of wavelength 750nm propagating in the positive z-direction (the 

beam has width w and just fills the grating). Find the angle to the normal of the first-order 

diffracted beam as it leaves the grating, and draw a ray diagram showing rays leaving the edges 

of the grating in the zeroth and first-order diffraction directions and propagating through 

the lens to z = 10 mm. 

Sketch on a large diagram the light intensity distribution in the plane at z = 7.5 mm, indicating 

the locations of the principal maxima and the separations of these maxima from the first adjacent 

minimum. Sketch on a large diagram the light intensity at the plane z = 10 mm.  

Explain briefly how this example gives a useful insight into the resolving power of a microscope 

with coherent illumination. 

 

 

 

 



13. A laser produces a beam of coherent light of wavelength  with plane wave-fronts travelling 

along z. The laser beam is passed through a transparency whose amplitude transmission 

coefficient in the  x,y  plane is independent of  y and varies with  x  as  A[1 + cos(2x/d)]  where 

A is a constant and d > . Show that three beams emerge from the transparency, and find their 

angles to the z-axis. 

 

An ordinary transmission diffraction grating illuminated normally by plane monochromatic light 

of wavelength 465 nm is examined under a microscope whose objective subtends an angle of 0.5 

radians at the grating. What is the smallest grating spacing that can be seen in the image? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14. An opaque plane has two long, narrow and parallel slits of negligible width spaced by a 

distance d. The slits are illuminated by a plane wave of monochromatic light of wavelength λ.   

(a) Make a quantitative sketch of the form of the intensity diffraction pattern observed on a screen 

at distance D from the plane of the slits where D >> d, i.e. label the angular separation of the 

fringe maxima or minima.                                                                                                                

(b) On the same scale, sketch the pattern obtained if two extra slits are added, one on each side of 

the original pair of slits at spaced at the same distance, d.                                                              

(c) Explain what happens to the general features of these patterns as more slits are added (keeping 

the same values of d and a in each case). 

(d) In the case of the four slit arrangement, the central two slits are covered by a film transmitting 

25% of the incident intensity. By using phasors, or otherwise, estimate the change in intensity 

distribution and sketch the new intensity distribution on the screen. 

 

15. A grating with N slits of spacing d  is illuminated normally with monochromatic light of 

wavelength  , and the p
th

  order principal maximum is observed at an angle p.  

 

(a) Show that the intensity at angle  is given by 
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Hence show that adjacent minima fall at angles PP    where  
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(c) Hence show that the instrumental width of the grating (in terms of wavelength) is given by 
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(d) Deduce that the resolving power of the grating is Np. 

  

Does the resolving power of a grating change if it is used in a medium of high refractive index? 

 



16.   A pair of slits, each of width a, and separated centre-to-centre by a distance d is illuminated 

normally by a plane monochromatic wave. Light transmitted by the slits is observed in the focal 

plane of a lens of focal length f.  Draw sketch graphs showing the variation of the observed 

intensity in the focal plane of the lens for the cases (i) d » a  (ii)  d = 3a  (iii)  d = 2a. In each 

case your sketch graph should show quantitatively the scales being used on the co-ordinate axes. 

 

17. A diffraction grating has slits ruled on opaque material and has 20 slits per mm. The distance 

between the slit centres is twice the width of each slit. The grating is uniformly illuminated at 

normal incidence. The transmitted light passes through a lens of focal length 1m and then onto a 

screen that lies 1m from the lens. On the screen the first-order diffraction peak lies 10mm from 

the centre-line of the apparatus. Calculate the wavelength of the light and predict the location of 

the next visible diffraction peak. 

 
18. A collimated beam from a white-light source is incident normally on a transmission 

grating with 500 lines per mm. The transmitted light then passes through a lens which 

is used to project the visible (380–780 nm) spectrum of the light source on to a strip of 

photographic film and to just cover its length of 35 mm. Calculate the focal length of the lens. 
 

19. A plane wave of light of wavelength λ is incident at angle  on a reflection grating 

of width W having δ lines per unit length. Derive an expression for the intensity of the reflected 

light as a function of the diffraction angle θ. Show that a maximum intensity is obtained at an 

angle θ given by 

θ = sin
−1

(λδ ± sin) 

 

Find an expression for the minimum wavelength difference Δλ that may be resolved with this 

arrangement.  

 

 
 

Such a reflection grating is used in an optical arrangement shown in the diagram and is similar to 

that used to select the operating wavelength of a laser. Light from a source is incident on the slit 

of width a, is collimated by the lens of focal length f and falls on the reflection grating at angle  
The grating has 2400 lines mm

−1
 and a total width W of 50 mm. 

 

(a) At what value of  will a maximum intensity of light of wavelength 600nm from the source 

return through the slit? 

(b) What factors influence the choice of slit width a to obtain the narrowest possible range of 

wavelengths returning to the light source? 

(c) Estimate the optimum value of a when the lens has a focal length of 200 mm. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22.  

 
 

The figure shows the elements of a Michelson interferometer: O, a half-silvered glass plate; C, a 

glass plate; M1, a fixed mirror; and M2, an adjustable mirror which can be moved towards or 

away from O. Also shown are paths of rays in a collimated beam from a coherent, 

monochromatic light source of wavelength λ = 500 nm. Explain the functions of elements O and 

C. Explain why interference fringes are formed and describe how they might be observed.  

Mirror M2 is initially set at a distance d= 0·1m from the image (in the half-silvered mirror) of M1 

and accurately parallel to it. Its position is then finely adjusted so as to produce a central dark 

fringe. Make an estimate of the order of this fringe.  

Show that the angular radius of the pth order dark ring around the central dark fringe is given by 
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The monochromatic source is now replaced by a source with a range of wavelengths Δλ = 1 nm. 

Discuss whether or not the fringe pattern still exists.  

20.  Give a brief account of the principal features of a Michelson interferometer used with visual 

observation and illuminated by an extended monochromatic source. Explain what configurations of 

the mirrors will give (i) circular fringes (ii) straight, equally spaced fringes. State where the fringes 

are localized and why. Why in case (ii) does the mirror spacing have to be small? 

 

21. A Michelson interferometer is set up to give circular fringes when illuminated by light of 

wavelength . 

(a)What will be the order of interference, po, for the fringe on the axis when the difference in the 

lengths of the arms of the interferometer is t?  

(b) What condition must be fulfilled to give a bright circular fringe at angle  to the axis when the 

interferometer is illuminated by an extended source of wavelength . 

(c) Explain why the order of interference p of a fringe at angle  to the axis is less than po.  

(d) Derive an expression for the radius, rp, of the p
th

-order fringe formed in the focal plane of a lens 

of focal length f. Hence show that the difference in radii of the p
th

–order and (p+1)
th

–order fringes is 
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(e) The path length of the arm containing the moving mirror is initially larger than the path in the 

arm containing the fixed mirror. The path difference t is slowly decreased towards the zero path 

difference condition. Describe what happens to the fringes as the path difference decreases and then 

increases as the moving mirror moves past the position of zero path difference.  



23. A Michelson interferometer is set up to give circular fringes and illuminated with light in the 

spectral range 800 -900 nm from an atomic caesium 
133

Cs discharge source. The intensity I(x) at 

the centre of the interference pattern is recorded as a function of the distance x of the moving 

mirror from that corresponding to zero path difference. It is found to have the form  

Ix  3I0  3I0 cosK1x cosK2x  I0 sinK1x sinK2x
 

for 0 ≤  x ≤ 5  mm, where K1 = 1.44 × 10
7
 m

-1
 , K2 = 3.48  × 10

5
 m

-1
  and  Io  is a constant. 

Show that this can be written as the sum of the patterns due to two monochromatic spectral 

components. Hence determine, for the two caesium lines in this wavelength range: 

 

(a) their mean wavenumber,  ,  

(b) their wavenumber separation,    

(c) their relative intensities. 

 

When the interference pattern is recorded over a larger range of path difference it is found that 

the periodic terms in the pattern are in fact multiplied by a function 

fx  expK3
2x 2

 
where  K3  = 5.02  m

-1
.  Make a rough (but reasonably realistic) sketch of the interference pattern 

as a function of  x  over a range large enough to show the effect of this term. 

 

[Optional extra.This factor arises from the Doppler broadening of spectral lines. This broadening 

is due to the different Doppler shift of the frequency, f, radiated by atoms moving with different 

speeds within a Maxwell-Boltzmann distribution. The Doppler shift in frequency is  cvff   

where v is the speed of the atom. Taking an average speed to be approximately MkT3 , where 

k is Boltzmann’s constant, M is the atomic mass and T is the temperature, the width of the 

frequency spread may be used to estimate the temperature. Use the values in the question to 

estimate the temperature of the gas of Cs atoms.] 

 

  24. (a) Show that monochromatic light of wavelength from an extended source incident on 

two parallel reflecting surfaces, separated by a distance d, will form fringes of equal 

inclination at angle  and order p where  

 cos2dp   

 

(b) .  Prove that the transmission function of a Fabry-Perot interferometer for monochromatic 

light of wavelength  incident at an angle  to the normal is 
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where I(0) is the incident intensity,    cos2/2 nt , where t is the plate separation, and 

n is the refractive index of the medium between the reflecting surfaces.  

 

(c) Obtain an expression for F in terms of the intensity reflectivity of the plates, R, and 

explain how it determines the sharpness of the fringes. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26. (a) Describe, with the aid of a labelled diagram including all essential components, how a 

Fabry-Perot etalon can be used to measure the separation of components in one of the spectral 

lines emitted by a discharge lamp. 

(b) The discharge lamp is known to emit a spectral line consisting of two closely spaced 

components, with a wavenumber separation of S . Explain how you would decide upon the 

value of the etalon spacing, d, in order to study this spectrum and suggest a suitable value for d.   

(c) Assuming firstly that the spectral linewidth C  of each component is negligible find an 

expression for the minimum value of plate reflectivity R required to resolve the two components. 

How would the appearance of the fringes be affected if SC   ?  

 

27. A certain spectral line is known to consist of two equally intense components with a 

wavenumber separation  S   less than 20 m
1
. The Fabry-Perot fringes produced by this line 

are photographed, using a plate separation of 25 mm. The diameters of the smallest rings are 

found to be, in mm: 

.15.7 ,60.6 ,57.5 ,84.4 ,30.3 ,82.1  

Explain why this experiment does not allow S  to be determined uniquely, but gives two 

possible values. What are they? Suggest a further experiment which could be carried out to 

resolve the ambiguity. 

 

28.  Explain what are meant by the instrumental function and the instrumental width associated 

with a spectroscopic device. Why is the instrumental width such an important property? 

 

29.  Calculate the minimum width a diffraction grating with 500 lines mm
-1

 must have, working 

at normal incidence, if it is to resolve two equally intense spectral lines with wavelengths spaced 

0.04 nm apart at 600 nm. The collimating lens of the spectrograph has a focal length of 500 mm; 

estimate the maximum slit width one could use without significantly affecting the resolution of 

the lines. How far would it be necessary to scan a Michelson Fourier Transform Spectrometer to 

resolve these lines? Would a Fabry-Perot interferometer be a good choice of instrument to 

measure their separation? 

25. Find the instrument width and resolving power of the Fabry-Perot etalon described in 

question 24, as follows. 

 

(a) Show that the values of   at which the intensity has dropped to 50% of maximum near the 

p
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(b) Show that two spectral lines for which the p
th

 maximum of one falls on the (p +1)
th

   

maximum of the other, the Free Spectral Range, are separated by FSR  given by 
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(c) From (a) and (b), show that the instrumental width, INST , (FWHM, full width at half 

maximum intensity) of the etalon is given by  
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(d) Hence show that the resolving power is Fp. 

 



 

 
 

 

 

 

 

 

 

 

 

 

31. A layer of a non-absorbing homogeneous dielectric of refractive index n2, is deposited on the 

surface of glass with refractive index n1. In the case where the thickness of the layer,  is given 

by 24/ n , a quarter wave layer, show that the condition for all the energy to be transmitted 

by the layer is 

n2
2 
= n1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

33. A beam of light is elliptically polarized with the major axis vertical. The ratio of the major 

and minor axes of the ellipse is a : b. Explain how you would use a quarter-wave plate to obtain 

linearly polarized light, and determine the angle of the plane of polarization to the vertical.  

 

A beam of light consisting of a mixture of elliptically polarized and unpolarized light is passed 

through a linearly polarizing filter. The maximum of the transmitted light intensity is observed 

when the transmission axis of the filter is vertical, and is twice the minimum intensity. In a 

second experiment, the beam is passed through a quarterwave plate with the fast axis vertical 

followed by the polarizing filter. The maximum is now observed when the transmission axis is at 

33.21
o
 to the vertical. Calculate the ratio of the intensities of the polarized to unpolarized 

components of the light.  

 

How could the handedness of the elliptically polarized component be determined? 

30. Light of wavelength,  falls at normal incidence from air onto a glass plate of refractive 

index nG covered by a film of dielectric material with refractive index nd and thickness l. Show 

that the ratio of the reflected, E’, to incident amplitude, r, is given by 
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32. (a) Explain what is meant by polarized light and describe the different types of polarization 

that are possible. Explain how a uniaxial birefringent material of length l, with ordinary and 

extra-ordinary refractive indices , no and ne respectively can be used to change the relative phase 

of two orthogonal components of the electric field in a light wave of wavelength . Describe 

briefly the principle of operation of a polarizing device made from a birefringent material. 

 

(b) Demonstrate analytically that unpolarized light can be converted to circularly polarized light 

by passing the radiation through a linear polarizer followed by a quarter-wave plate at a suitable 

orientation. 

 

(c) A beam of initially unpolarized light passes through this system, and is then reflected back 

normally through it from a plane mirror. Describe the state of polarization of the beam in each 

part of its path through the system. 

 

(d) Show that any elliptically polarized light can be converted to plane polarized light using a 

suitably oriented quarter-wave plate. Is the converse also true? Show also that plane polarized 

light remains plane polarized after passing through a half-wave plate, but with the direction of 

the electric vector altered. How would you use a half-wave plate to change this direction by 40
o
? 

 

 

 



 

34. A beam of, initially unpolarized, light is incident normally on a piece of polarizing sheet 

(polaroid) A, the transmitted light then falling on a second similar sheet B. A and B are set with 

their axes at right angles. A third polaroid sheet C is placed between the first two with its axis at 

an angle  to that of sheet A.  

(a) What fraction of the incident energy passes through the system? 

 

(b) In a Young's double slit experiment, both slits are covered by polarizing sheets, one with its 

axis horizontal, the other with its axis vertical. Explain why no fringes are seen in the plane of 

observation. 

 

(c) Given a third polarizing sheet and a half-wave mica plate, explain where you would place 

them, and in what orientation, so that fringes would appear. Could the pattern be produced using 

only the half-wave plate? 

 

 

Suggested Problem Sets for Tutorials 
 

1. (Question 1 is optional revision of first year material.) Questions: 2, 6, 7, 8, 9, 10 

 

2. Questions 14, 15, 16, 18, 19 

 

3. Questions 20, 21, 23, 24, 25, 27 

 

4. Questions 30, 31, 32, 33, 34 

 

 

 


