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PROBLEM SET 3 AND SOLUTIONS

Julia Yeomans

Comments and corrections to julia.yeomans@physics.ox.ac.uk please.

1. Saddle node bifurcation: a biochemical switch

A gene G is activated by a biochemical signal substance S. Let g(t) denote the concentration
of the gene product, and assume that the concentration s0 of S is fixed. The model is

ġ = k1s0 − k2g +
k3g

2

k24 + g2

where the k’s are positive constants.

(a) Suggest physical motivations for each term.

(b) Show that the system can be put in the dimensionless form

dx

dτ
= s− rx+

x2

1 + x2

giving expressions for r and s.

(c) Show that, if s = 0 there are two positive fixed points x∗ if r < rc and find rc. Sketch
the flows as a function of r in an (r, x) plot.

(d) For (a) s = 0.05 and (b) s = 0.15 give a rough sketch of the fixed points and flows in
an (r, x) plot.

(e) Find parametric equations for the bifurcation curves in (r, s) space and classify the
bifurcations that occur. Plot the bifurcation curves (using eg Mathematica).

2. Pitchfork bifurcation

Consider the dynamical system
ẋ = ε+ rx− x3

where ε is known as an imperfection parameter.

(a) Derive the fixed points and their stability properties for ε = 0. Thus confirm that a
supercritical pitchfork bifurcation occurs at r = 0. Sketch the bifurcation diagram (r, x).

(b) For ε = 0, confirm that this system is symmetric under x ⇔ −x. Show that this
symmetry is broken for ε 6= 0.

(c) By treating ε as a small parameter, determine how the fixed points and their stability
are modified in the case of a small, non-zero value of ε. Note that this approach breaks
down as r → 0, and

(d) obtain an exact expression for the position of any fixed points for r = 0.

(e) Hence sketch the bifurcation diagram (r, x) for a small positive value of ε. This bi-
furcation is known as an imperfect pitchfork bifurcation. Using your diagram explain how
abrupt jumps in x might occur as r is slowly varied.

(f) Calculate the curves εc(r) where saddle node bifurcations occur, and plot them in the
(ε, r) plane, indicating the number of fixed points in each region.



3. Flows in phase space

In each of the following dynamical systems, identify the fixed points, classify them, and
sketch a phase portrait.

(i) ẋ = y, ẏ = −2x− 3y.
Hint: The trajectories tend to the slowly decaying eigenvector near the fixed point and
the fast eigenvector far from the fixed point. Why?
(ii) ẋ = 5x+ 2y, ẏ = −17x− 5y.
Hint: It helps to check where the trajectories cross the axes and/or to notice that this is
a Hamiltonian system.
(iii) ẋ = x− y, ẏ = x2 − 4.

4. Damped pendulum

The motion of a damped pendulum is described by

θ̈ + bθ̇ + sin θ = 0.

(a) Rewrite the equation as a two-dimensional linear system.

(b) Classify the fixed points for b < 2, (ii) b > 2. Sketch the phase portrait for small b
and explain how it changes as b increases, relating your results to the motion of a under-
damped and over-damped pendulum.

5. Lorenz equations

(a) Write down the Lorenz equations and solve for the fixed points, stating the values of r
over which each exists. Comment on the physical significance of each of these fixed points
in the context of Rayleigh-Bénard convection.

(b) Establish the stability criteria for the fixed point at the origin as a function of r. State
the stability criteria for the remaining fixed points.

(c) The following figure shows a projection onto the x − y plane of a trajectory of a
particle governed by the Lorenz equations with r = 28, σ = 10, b = 8/3. The bold crosses
and diamonds show points on a Poincaré section where the trajectory crosses the plane
z = r − 2σ > 0. One symbol denotes trajectories passing downwards (decreasing z), the
other upwards. Which is which?

(d) Show that a the length of a small displacement element, |δx|, between two adjacent
trajectories grows or decays exponentially if δx is aligned with one of the eigenvectors of
(J + J T )/2 where J is the Jacobian matrix.

(e) Write down the matrix (J+J T )/2 at the point (0, 0, r−2σ) and solve for its eigenvalues.
Hence deduce that the dominant directions in which δx grows and decays are aligned
parallel to the x− y plane at this point, whereas displacements perpendicular to the x− y
plane decay slowly.

(f) Using the continuity equation for flows in phase space, show that volume elements
contract exponentially in time at a rate

˙δV = δV0 exp−(σ + 1 + b)t.
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1. (a) Write down the Lorenz equations and solve for the fixed points, stating the values
of the r over which each exists. Comment on the physical significance of each of these
fixed points in the context of Rayleigh-Bénard convection.

(b) Establish the stability criteria for the fixed point at the origin as a function of r.
State the stability criteria for the remaining fixed points.

2. (a) The following figure shows a projection onto the x-y plane of a trajectory of a
particle governed by the Lorenz equations with r = 28, σ = 10, b = 8/3. The bold
crosses and diamonds show points on a Poincaré section where the trajectory crosses the
plane z = r − 2σ > 0.

Sample trajectory of the Lorenz (1963) system
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One symbol denotes trajectories passing downwards (decreasing z), the other upwards.
Which is which?

(b) Show that a the length of a small displacement element, |δx|, between two adjacent
trajectories grows or decays exponentially if δx is aligned with one of the eigenfunctions
of (J + JT)/2 where J is the Jacobian matrix.

(c) Write down the matrix (J + JT)/2 at the point [0, 0, r − 2σ] and solve for its eigen-
values. Hence deduce that the dominant directions in which δx grows and decays are
aligned parallel to the x-y plane at this point, whereas displacements perpendicular to
the x-y plane decay slowly.

Note: * more difficult — might omit on a first pass; ** optional — for those after a challenge!
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(d) Using the continuity equation for flows in phase space (Lecture 14), show that volume
elements contract exponentially in time at a rate,

˙δV = (δV )0 e−(σ+1+b)t.

Since (J + JT)/2 is a symmetric matrix, its eigenfunctions are orthogonal. Confirm that
the volume of a rectangular volume element defined by three displacement elements
aligned with each of the eigenfunctions in your answer to part (c) decays at the same
rate.

(e) Using your answers to the above questions, discuss the extent to which a volume
element in the phase space of the Lorenz behaves similarly, and differently, to the fluid
element considered in Problem Set 1, Question 2.

** 3. In this question, we establish the existence of a trapping region for the Lorenz
equations, defined in the conventional manner.

(a) Consider the function
F = rx2 + σy2 + σ(z − 2r)2 (1)

Calculate the rate of change of F following a trajectory in phase space, and show that:

Ḟ < 0 if rx2 + y2 + b(z − r)2 > br2. (2)

(b) Note that equations (1) and (2) define two ellipsoids.

By thinking about the relative size of the two ellipsoids, or otherwise, deduce that all
trajectories eventually enter and remain inside an ellipsoid

rx2 + σy2 + σ(z − 2r)2 = C2,

where C is a sufficiently large constant.

4. Calculate the similarity dimension and state the area of the Sierpinski carpet:
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Since (J +J T )/2 is a symmetric matrix, its eigenfunctions are orthogonal. Confirm that
the volume of a rectangular volume element defined by three displacement elements aligned
with each of the eigenvectors in your answer to part (e) decays at the same rate.

6. A chaotic map

Consider the decimal shift map on the unit interval given by

xn+1 = 10 xn (mod1)

where mod 1 means keep only the non-integer part of x eg 1.67 (mod 1) =0.67.

(i) Draw the graph of the map.
(ii) Find all the fixed points.
(iii) Show that the map has periodic points of all periods, but that all of them are unstable.
(iv) Show that the map has infinitely many aperiodic orbits.
(v) By considering the rate of separation between two nearby orbits, show that the map
has sensitive dependence on initial conditions.


