Quantum Field Theory
Homework #3

Hand-in time and place (week 7):

Class Hand-in time | Hand-in place | Teaching Assistant
Tuesday 15.30-17.00 | Sunday 6pm Mathematics’ Johan Henriksson
Friday 14.30-16.00 Tuesday noon Mathematics’ Johan Henriksson
Thursday 8.30-10.00 | Monday 6pm Mathematics* Matteo Parisi
Friday 8.30-10.00 Monday 6pm Mathematics* Matteo Parisi

T Mezzanine level in the Mathematical Institute (Andrew Wiles Building,
Woodstock Road)
DO NOT FORGET TO PUT THE NAME OF YOUR TEACHING ASSISTANT ON THE SHEET.

Useful formulae:

e Schwinger parametrisation:
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e Miscellaneous useful integrals:
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8. Feynman parametrisation
Using induction in n, prove the following formula
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9. Evaluating Feynman integrals

In this homework we evaluate a contribution to the four-point correlator
in the ¢* theory in Minkowski space at one-loop, given by the diagram
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(a) Write the dimensionless coupling constant gq in 4 — 2¢ dimensions
as the bare coupling \g multiplied by a suitable power of the mass
scale .

(b) Show that using the Feynman rules in momentum space and after
Wick rotation the diagram yield
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(c¢) Use Feynman’s identity to rewrite the loop integration as
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(d) Show that the momentum integral evaluates to
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where v is the Euler constant.



10. Wave-function renormalisation

In order to find the leading correction to wave-function renormalization
constant in A\g¢* theory in Minkowski space we will evaluate the so-
called sunrise diagram:
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Write down the Feynman integral for sunrise diagram in four di-

mensions. Remember to include the proper symmetry factor.

Use Feynman parametrisation and rewrite the Feynman integral
as
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where C' is a constant and the function D depends only on the
squares of momenta ¢; and gs.

In order to find the contribution to wave-function renormalization
we need to evaluate the derivative of A(p?) with respect to p*.
Working in Euclidean space and using dimensional regularization
in d = 4 — 2¢ dimensions show that
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for some functions F' and G.

Using the explicit form of this functions and working in the leading
order perturbative expansion in dimensionless coupling evaluate
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dp?
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Some of the integrals given in the introduction can be useful here.

(e) Evaluate the anomalous dimension for the field ¢ from the formula
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where up the order we are working at
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Compare the result with the one found in lecture.
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