Quantum Field Theory

Homework \#2
Hand-in time and place (week 5):

Class	Hand-in time	Hand-in place	Teaching Assistant
Tuesday 15.30-17.00	Sunday 6pm	Mathematics †	Johan Henriksson †
Friday 14.30-16.00	Tuesday noon	Mathematics †	Johan Henriksson
Thursday 8.30-10.00	Monday 6pm	Mathematics ‡	Matteo Parisi
Friday 8.30-10.00	Monday 6pm	Mathematics ‡	Matteo Parisi

\dagger Mezzanine level in the Mathematical Institute (Andrew Wiles Building, Woodstock Road)
DO NOT FORGET TO PUT THE NAME OF YOUR TEACHING ASSISTANT ON THE SHEET.

4. Wick theorem

Recall the definition of the time ordering of fields

$$
T\left\{\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)\right\}= \begin{cases}\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right), & t_{1}>t_{2} \tag{1}\\ \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{1}\right), & t_{2}>t_{1}\end{cases}
$$

and the normal ordering of fields (all annihilation operators are moved to the right of all creation operators)

$$
\begin{equation*}
: a_{i}^{\dagger} a_{j} a_{k}^{\dagger} a_{l}:=a_{i}^{\dagger} a_{k}^{\dagger} a_{j} a_{l}, \tag{2}
\end{equation*}
$$

(a) Using the formula for the field written in terms of its Fourier modes

$$
\begin{equation*}
\phi(x, t)=\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left(a_{p}^{\dagger} e^{i p \cdot x}+a_{p} e^{-i p \cdot x}\right) \tag{3}
\end{equation*}
$$

prove the Wick theorem for two fields:

$$
\begin{equation*}
T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\}=: \phi\left(x_{1}\right) \phi\left(x_{2}\right)+\Delta_{F}\left(x_{1}-x_{2}\right):, \tag{4}
\end{equation*}
$$

where $\Delta_{F}\left(x_{1}-x_{2}\right)$ is the Feynman propagator.
(b) Prove the Wick theorem for n fields recursively.
(c) Using the Wick theorem evaluate the tree-level vacuum expectation value of

$$
\begin{equation*}
T\left\{\phi\left(x_{1}\right) \phi\left(x_{2}\right) \ldots \phi\left(x_{n}\right)\right\} \tag{5}
\end{equation*}
$$

for $n=4,5,6$. Draw corresponding Feynman diagrams.

5. Feynman diagrams and their symmetries

(a) Compute symmetry factors W_{G} for diagrams in Figure 1.

Figure 1:
(b) Confirm the formula

$$
\begin{equation*}
W_{G}=\frac{1}{2^{S+D} 3!^{T} N_{I V P}} \tag{6}
\end{equation*}
$$

where

- S is the number of self-connections;
- D is the number of double connections;
- T is the number of triple connections;
- $N_{I V P}$ is the number of identical vertex permutations;
for all diagrams in Figure 1.

6. Connected vs disconnected diagrams

Consider the two-point function $\langle\phi(x) \phi(y)\rangle$ in the $\lambda \phi^{4}$ theory:

$$
\begin{equation*}
\langle\phi(x) \phi(y)\rangle=\frac{\langle 0| T\left\{\phi_{I}(x) \phi_{I}(y) \exp \left(-i \int_{-\infty}^{\infty} d t H_{I}(t)\right)\right\}|0\rangle}{\langle 0| T\left\{\exp \left(-i \int_{-\infty}^{\infty} d t H_{I}(t)\right)\right\}|0\rangle} \tag{7}
\end{equation*}
$$

(a) For the denominator of (7), identify different diagrams arising from an application of Wick's theorem up to the order λ^{2}. Confirm that to order λ^{2}, the combinatoric factors work out so that the denominator of (7) is given by the exponential of the sum of distinct vacuum bubble types

$$
\begin{equation*}
\langle 0| T\left\{\exp \left(-i \int_{-\infty}^{\infty} d t H_{I}(t)\right)\right\}|0\rangle=\exp (\bigcirc+\bigcirc+\circlearrowleft+\ldots) . \tag{8}
\end{equation*}
$$

(b) Perform similar analysis for the numerator of (7) and prove, up to the order λ^{2}, that it is given by the sum of all connected diagrams times the exponential of the sum of all disconected diagrams. Prove that in order to calculate $\langle\phi(x) \phi(y)\rangle$ one needs to consider only contributions coming from connected diagrams.

7. Feynman rules

(a) Write the Feynman rules (in momentum space) for the theory of two real scalars of mass m and M with the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{1}{2} \partial_{\mu} \chi \partial^{\mu} \chi+\frac{1}{2} M^{2} \chi^{2}+\frac{1}{2} \lambda \phi^{2} \chi . \tag{9}
\end{equation*}
$$

Use plain and dashed lines for the ϕ and χ-propagator, respectively.
(b) Draw the tree and one-loop diagrams that contribute to the correlation functions $\langle\phi \phi\rangle,\langle\chi \chi\rangle,\langle\chi\rangle$ and $\langle\chi \phi \phi\rangle$, and write down explicit expressions for the one-loop diagrams, including the correct symmetry factors.

