Quantum Field Theory

Homework \#1

Hand-in time and place (week 3):

Class	Hand-in time	Hand-in place	Teaching Assistant
Tuesday 15.30-17.00	Sunday 6pm	Mathematics †	Johan Henriksson †
Friday 14.30-16.00	Tuesday noon	Mathematics †	Johan Henriksson
Thursday 8.30-10.00	Monday 6pm	Mathematics ‡	Matteo Parisi
Friday 8.30-10.00	Monday 6pm	Mathematics ‡	Matteo Parisi

\dagger Mezzanine level in the Mathematical Institute (Andrew Wiles Building, Woodstock Road)
DO NOT FORGET TO PUT THE NAME OF YOUR TEACHING ASSISTANT ON THE SHEET. (Problems with an asterisk ($*$) may be more difficult and are optional.)

1. Scalar Field Theory For the Lagrangian

$$
\begin{equation*}
\mathcal{L}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}, \tag{1}
\end{equation*}
$$

where ϕ is a real-valued scalar field:
(a) Derive the Klein-Gordon equation for ϕ from the least action principle.
(b) Find the momentum $\pi(x)$ conjugate to $\phi(x)$.
(c) Use $\pi(x)$ to calculate the Hamiltonian density \mathcal{H}.
(d) Using the transformation rules for scalar fields

$$
\begin{equation*}
\phi^{\prime}\left(x^{\prime}\right)=\phi(x), \quad \text { for } x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}, \tag{2}
\end{equation*}
$$

prove that the scalar field theory is invariant under the Lorentz transformations.
(e) Based on Noether's theorem, calculate the stress-energy tensor T_{ν}^{μ} of this field and the conserved charges associated with time and spatial transformations P^{μ} of this field.
(f) Using the Klein-Gordon equation show that $\partial_{\mu} T_{\nu}^{\mu}=0$ for this field.
(g) Show that P_{0} calculated in part (e) is the same as the total Hamiltonian, i. e. spatial integral of \mathcal{H} calculated in part (c).

2. Canonical Quantization of the complex scalar field

Consider the field theory of a complex-valued scalar field obeying the Klein-Gordon equation. The Lagrangian of this theory is

$$
\begin{equation*}
\mathcal{L}=\partial_{\mu} \phi^{*} \partial^{\mu} \phi-m^{2} \phi^{*} \phi \tag{3}
\end{equation*}
$$

(a) Find the conjugate momenta to $\phi(x)$ and $\phi^{*}(x)$ and the canonical commutation relations. Show that the Hamiltonian is

$$
\begin{equation*}
H=\int d^{3} x\left(\pi^{*} \pi+\nabla \phi^{*} \cdot \nabla \phi+m^{2} \phi^{*} \phi\right) . \tag{4}
\end{equation*}
$$

Compute the Heisenberg equation of motion for $\phi(x)$ and show that it is precisely the Klein-Gordon equation.
(b) Diagonalize the Hamiltonian H by introducing creation and annihilation operators. Show that the theory contains two sets of particles with mass m.
(c) Rewrite the conserved charge

$$
\begin{equation*}
Q=\frac{i}{2} \int d^{3} x\left(\phi^{*} \pi^{*}-\pi \phi\right) \tag{5}
\end{equation*}
$$

in terms of creation and annihilation operators, and evaluate the charge of the particles of each type.
$\left(d^{*}\right)$ Consider the case of two complex Klein-Gordon fields with the same mass. Label the fields $\phi_{a}(x)$, where $a=1,2$. Show that there are four conserved charges, one given by the generalization of the previous part, and other three given by

$$
\begin{equation*}
Q^{i}=\frac{i}{2} \int d^{3} x \sum_{a, b}\left(\phi_{a}^{*}\left(\sigma^{i}\right)_{a b} \pi_{b}^{*}-\pi_{a}\left(\sigma^{i}\right)_{a b} \phi_{b}\right) \tag{6}
\end{equation*}
$$

where σ^{i} are Pauli sigma matrices. Show that these three charges have the commutation relations of angular momentum ($\mathrm{SU}(2)$).
Generalize these results to the case of n identical complex scalar fields.

3. Free particle path integral

(a) Consider the free particle path integral (with the mass $m=1$ for simplicity)

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\int \mathcal{D} q(t) \exp \left[i \int_{t_{i}}^{t_{f}} \frac{\dot{q}^{2}}{2} d t\right] . \tag{7}
\end{equation*}
$$

Write down a general path $q(t)$ as the sum of the classical path $q_{c}(t)$ (that is, motion at constant velocity) plus a Fourier series with coefficients $a_{n}, n \geq 1$.
(b) Show that the action for such a general path is

$$
\begin{equation*}
S=\frac{1}{2} \frac{\left(q_{f}-q_{i}\right)^{2}}{t_{f}-t_{i}}+\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{2} \frac{(n \pi)^{2}}{t_{f}-t_{i}} a_{n}^{2} . \tag{8}
\end{equation*}
$$

(c) Perform the integral

$$
\begin{equation*}
\int d a_{n} e^{i S} \tag{9}
\end{equation*}
$$

over a single Fourier mode.
(d) Write the entire path integral as a constant, depending only on $t_{f}-t_{i}$, times the classical action:

$$
\begin{equation*}
\int \prod_{n=1}^{\infty} d a_{n} e^{i S}=c\left(t_{f}-t_{i}\right) \exp \left(\frac{i}{2} \frac{\left(q_{f}-q_{i}\right)^{2}}{t_{f}-t_{i}}\right) . \tag{10}
\end{equation*}
$$

Does the constant have a finite value?
(e) The actual path integral measure contains a normalization constant γ

$$
\begin{equation*}
\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle=\int \mathcal{D} q e^{i S}=\gamma \int \prod_{n=1}^{\infty} d a_{n} e^{i S} \tag{11}
\end{equation*}
$$

such that the combination $\gamma \cdot c\left(t_{f}-t_{i}\right)$ is a finite number. The requirement that

$$
\begin{equation*}
\int d q\left\langle q_{f}, t_{f} \mid q, t\right\rangle\left\langle q, t \mid q_{i}, t_{i}\right\rangle=\left\langle q_{f}, t_{f} \mid q_{i}, t_{i}\right\rangle \tag{12}
\end{equation*}
$$

implies a relation between $\gamma \cdot c\left(t_{f}-t\right), \gamma \cdot c\left(t-t_{i}\right)$ and $\gamma \cdot c\left(t_{f}-t_{i}\right)$. Find it and solve it. Hint: $\gamma \cdot c(\tau) \sim \tau^{-1 / 2}$.

