Groups and Representations

Problem Sheet 3

Date: TBA, Deadline: TBA

1) (Lie-groups and their subgroups) Using (extended) Dynkin diagrams, convince yourself that
a) $E_{8} \supset S O(16) ; S U(5) \times S U(5) ; S U(3) \times E_{6} ; S U(2) \times E_{7} ; S U(9) ; S U(4) \times S O(10)$
b) $E_{6} \supset S O(10) \times U(1) ; S U(2) \times S U(6) ; S U(3) \times S U(3) \times S U(3)$
c) $S O(10) \supset S U(5) \times U(1) ; S U(2) \times S U(2) \times S U(4) ; S O(8) \times U(1)$
2) (Weight systems of $S U(5)$)
a) Work out the weight systems for the representations $\mathbf{5} \sim(1000)$ and $\overline{\mathbf{5}} \sim(0001)$ of $S U(5)$.
b) Do the same for the $S U(5)$ representations $10 \sim(0100)$ and $\mathbf{1 5} \sim(2000)$.
c) Using the weight systems from a) and b), show that $\mathbf{5} \otimes \mathbf{5}=\mathbf{1 0} \oplus \mathbf{1 5}$.
3) (Branching of $S U(5)$ representations) The projection matrix for the sub-group $S U(2) \times S U(3)$ of $S U(5)$ is given by

$$
P(S U(5) \supset S U(2) \times S U(3))=\left(\begin{array}{cccc}
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Further, the $U_{Y}(1)$ sub-group of $S U(5)$ which commutes with $S U(2) \times S U(3)$ can be described by the dual vector $Y=[-2,1,-1,2] / 3$.
a) Find the branching of the $S U(5)$ representations $\mathbf{5}, \overline{5}$ and $\mathbf{1 0}$ under $S U(2) \times S U(3)$, using the weight systems derived in question 2).
b) For each $S U(2) \times S U(3)$ multiplet in a), find the value of the $U_{Y}(1)$ charge.
c) The standard model of particle physics has a symmetry (gauge) group $S U(2) \times S U(3) \times$ $U_{Y}(1)$. One family of matter fields fits into the representation $(\mathbf{2}, \mathbf{3})_{1 / 3} \oplus(\mathbf{1}, \overline{\mathbf{3}})_{2 / 3} \oplus$ $(\mathbf{1}, \overline{\mathbf{3}})_{-4 / 3} \oplus(\mathbf{2}, \mathbf{1})_{-1} \oplus(\mathbf{1}, \mathbf{1})_{2}$ of this group. Compare this with the results obtained in a) and b). Which $S U(5)$ representation can accommodate one standard model family?
4) ($S O(10)$ weight systems and branching) The projection matrix for the $S U(5)$ sub-group of $S O(10)$ is given by

$$
P(S O(10) \supset S U(5))=\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right)
$$

a) Work out the weight system of the $S O(10)$ representation with highest weight (00001). What is the dimension of this representation?
b) Using the above projection matrix, find the branching of the representation in a) under $S U(5)$.
c) Comment on the possible physical relevance of the $S O(10)$ representation with highest weight (00001) in the light of the results from question 3).
5) (Value of Casimir operator in Dynkin formalism)

Consider the representations $\mathbf{n} \sim(1,0, \cdots, 0), \overline{\mathbf{n}} \sim(0, \cdots, 0,1)$ and $\mathbf{n}^{2}-\mathbf{1} \sim(1,0, \cdots, 0,1)$ of $S U(n)$.
a) Compute the value of the quadratic Casimir C for those representations.
b) Compute the index c of those representations and determine the one-loop β-function for an $S U(n)$ Yang-Mills theory with N_{f} Dirac fermions in \mathbf{n}. Discuss the qualitative behaviour of the gauge coupling as a function of the energy scale for $N_{f}=6$.
(Hint: The explicit form of the Cartan martices, metric tensors and much more can be found in R. Slansky, Phys. Rep. 79 (1981) 1.)

