Groups and Representations

Problem Sheet 2

Date: TBA, Deadline: TBA

1) (Lie-groups and their Lie-algebras)
a) Derive the Lie-algebras of $S O(4)$ and $S U(2) \times S U(2)$ and show that they are isomorphic.
b) Do the same for $S O(6)$ and $S U(4)$ (Hint: It is helpful to contruct a basis for the $S U(4)$ Lie algebra starting with gamma matrices in six Euklidean dimensions - these are 8×8 matrices - and their antisymmetrized products.)
c) Show that the $2 n \times 2 n$ real matrices M satisfying $M^{T} \eta M=\eta$ where

$$
\eta=\left(\begin{array}{cc}
0 & \mathbf{1}_{n} \\
-\mathbf{1}_{n} & 0
\end{array}\right)
$$

form a group. This group is called the symplectic group $S p(2 n)$. Find the Lie-algebra $s p(2 n)$ of $S p(2 n)$ and its Cartan subalgebra. Further, determine $\operatorname{dim}(s p(2 n))$ and $\operatorname{rk}(s p(2 n)) .[6]$
2) (Relation between $S U(n) \times U(1)$ and $U(n)$) A map $f: S U(n) \times U(1) \rightarrow U(n)$ is defined by $f((U, z))=z U$, where $U \in S U(n)$ and $z \in U(1)$.
a) Show that this map f defines a group homomorphism.
b) Work out $\operatorname{Ker}(f)$ and $\operatorname{Im}(f)$.
c) From the result in b), deduce the relation between $S U(n) \times U(1)$ and $U(n)$.
3) (The Lorentz group) A Dirac spinor ψ transforms in the representation $R_{D}=(1 / 2,0) \oplus$ $(0,1 / 2)$ of the Lorentz group and can be written as

$$
\psi=\binom{\chi_{L}}{\chi_{R}}
$$

where χ_{L} and χ_{R} are left- and right-handed Weyl spinors. The representation matrices $R_{D}(M)$ acting on ψ are given by

$$
R_{D}(M)=\left(\begin{array}{cc}
R_{L}(M) & 0 \\
0 & R_{R}(M)
\end{array}\right) .
$$

Define the gamma matrices γ_{μ} by

$$
\gamma_{0}=\left(\begin{array}{cc}
0 & \mathbf{1}_{2} \\
\mathbf{1}_{2} & 0
\end{array}\right), \quad \gamma_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) .
$$

a) Using the explicit expressions for $R_{L}(M)$ and $R_{R}(M)$, show that an infinitesimal transformation of ψ takes the form $\delta \psi=i \epsilon^{\mu \nu} \sigma_{\mu \nu} \psi$ where $\sigma_{\mu \nu}=\frac{i}{2}\left[\gamma_{\mu}, \gamma_{\nu}\right]$ and $\epsilon^{\mu \nu}$ are small parameters.
b) Show explicitly that the matrices $\sigma_{\mu \nu}$ form a representation of the Lorentz group Lie algebra.
c) Use the relation between the Lorentz group and $S L(2, C)$ to show that $R_{D}(M)^{-1} \gamma_{\mu} R_{D}(M)=$ $R_{V}(M)_{\mu}{ }^{\nu} \gamma_{\nu}$.
d) Proof that the Dirac equation for the spinor ψ with mass m is Lorentz-covariant by applying the result c).
4) ($S U(5)$, tensor methods and branching)
a) Find the Young-tableaux and associated tensors for the representations 1, 5, $\overline{\mathbf{5}}, \mathbf{1 0}, \mathbf{1 5}$ and $\mathbf{2 4}$ of $S U(5)$.
b) Show that

$$
\begin{aligned}
5 \times \overline{5} & =1+24 \\
5 \times 5 & =10+15 \\
\overline{5} \times 10 & =5+45 \\
10 \times 10 & =5+45+50
\end{aligned}
$$

using Young-tableaux.
c) Using the obvious embedding of $S U(3) \times S U(2)$ into $S U(5)$, such that, $U_{3} \in S U(3)$ and $U_{2} \in S U(2)$ are embedded as

$$
U=\left(\begin{array}{cc}
U_{3} & 0 \\
0 & U_{2}
\end{array}\right) \in S U(5)
$$

work out the branching of the representations $\mathbf{5}, \overline{\mathbf{5}}$ and $\mathbf{1 0}$ under $S U(3) \times S U(2)$.
d) Show that the unique $U(1)$ sub-group of $S U(5)$ which commutes with $S U(3) \times S U(2)$ (embedded into $S U(5)$ as above) is given by the matrices $\operatorname{diag}\left(e^{-2 i \alpha}, e^{-2 i \alpha}, e^{-2 i \alpha}, e^{3 i \alpha}, e^{3 i \alpha}\right)$, where $\alpha \in \mathbb{R}$. For this $U(1)$, work out the charges for all $S U(3) \times S U(2)$ representations which appear in the branchings worked out in c).
e) Using tensor methods, write down the $S U(5)$ singlet in $\mathbf{5} \otimes \mathbf{1 0} \otimes \mathbf{1 0}$ and $\overline{\mathbf{5}} \otimes \overline{\mathbf{5}} \otimes \mathbf{1 0}$. Using the branchings from c), write these singlets in terms of $S U(3) \times S U(2)$ representations.
5) (Relation between $S U(n)$ and $S O(2 n)$) Write matrices $U \in S U(n)$ as $U=U_{R}+i U_{I}$, where $U_{R}=\operatorname{Re}(U)$ and $U_{I}=\operatorname{Im}(U)$ and define the map $f: S U(n) \rightarrow G l\left(\mathbb{R}^{2 n}\right)$ by

$$
f(U)=\left(\begin{array}{cc}
U_{R} & -U_{I} \\
U_{I} & U_{R}
\end{array}\right)
$$

a) Show that $\operatorname{Im}(f) \subset S O(2 n)$.
b) Show that f is an injective group homomorphism. (Hence, it defines an embedding of $S U(n)$ into $S O(2 n)$ and we can think of $S U(n)$ as a sub-group of $S O(2 n)$.)
c) Show that the branching of the fundamental representation, $\mathbf{2 n}$, of $S O(2 n)$ under the $S U(5)$ sub-group in b) is given by $\mathbf{2 n} \rightarrow \mathbf{n} \oplus \overline{\mathbf{n}}$, where \mathbf{n} is the fundamental of $S U(n)$.
d) For $n=5$, work out the branching of the adjoint of $S O(10)$ under $S U(5)$.

