String Theory II: Assignment 2

(1) Torus-Partition Function and Modular Invariance: Free Boson

1. Fundamental Domain D of the torus:

Let $\tau \in \mathbb{C}$ be the modular parameter (modulus) of the torus $T_{\tau}^{2}=\mathbb{C} / \mathbb{Z} \oplus \tau \mathbb{Z}$. Show that the torus T_{τ}^{2} and $T_{\gamma \tau}^{2}$, where $\gamma \in S L_{2} \mathbb{Z}$, i.e.

$$
\begin{equation*}
\gamma \tau=\frac{a \tau+b}{c \tau+d}, \quad a, b, c, d \in \mathbb{Z}, \quad a d-b c=1 \tag{1}
\end{equation*}
$$

describe the same space, i.e. the same identifications in \mathbb{C}. Using these $S L_{2} \mathbb{Z}$ transformations one can restrict τ to the fundamental domain

$$
\begin{equation*}
D: \quad-\frac{1}{2} \leq \operatorname{Re}(\tau) \leq \frac{1}{2}, \quad|\tau| \geq 1 \tag{2}
\end{equation*}
$$

Sketch D and determine the images of D under

$$
\begin{array}{ll}
T: & \\
S \rightarrow \tau+1 \tag{3}\\
S: & \\
\tau \rightarrow-\frac{1}{\tau} .
\end{array}
$$

2. For a single free boson $X^{\mu}(z, \bar{z})$ in d dimensions, the torus partition function is

$$
\begin{equation*}
Z(\tau)=\operatorname{Tr} q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}} \tag{4}
\end{equation*}
$$

where $q=e^{2 \pi i \tau}$. By performing the integral over momenta k and performing the sum over oscillator modes evaluate $Z(\tau)$ and show that it is modular invariant, i.e. $Z(\tau)=Z(\gamma \tau)$, with $\gamma \in S L_{2} \mathbb{Z}$. You may use that $\eta(\tau+1)=e^{i \pi / 12} \eta(\tau)$ and $\eta(-1 / \tau)=\sqrt{-i \tau} \eta(\tau)$. What is the relevance of this result?

(2) Torus-Partition Function: RNS String

The one-loop or torus partition function for the closed RNS string is

$$
\begin{equation*}
Z_{T^{2}}=V_{10} \int_{D} \frac{d^{2} \tau}{2 \tau_{2}} \int \frac{d^{10} k}{(2 \pi)^{10}} \operatorname{Tr}_{\mathcal{H}_{k}}(-1)^{\mathcal{F}} q^{\alpha^{\prime}\left(k^{2}+M^{2}\right) / 4} \bar{q}^{\alpha^{\prime}\left(k^{2}+\tilde{M}^{2}\right) / 4} \tag{5}
\end{equation*}
$$

where \mathcal{H}_{k} is the physical state (including GSO-projection) space with momentum k ground state, and $q=e^{2 \pi i \tau}$, where τ is again the modular parameter (modulus) of the torus $T_{\tau}^{2}=\mathbb{C} / \mathbb{Z} \oplus \tau \mathbb{Z}$ and D the fundamental domain. The spacetime Fermion number operator is \mathcal{F} (not to be confused with the worldsheet one F).

1. Evaluate the NS-sector and R-sector partition functions.
2. Using the results on theta-functions from the lecture, show that this partition function vanishes.
(3) Ghosts!

Let b and c be anticommuting fields, β and γ commuting fields, with action

$$
\begin{equation*}
S=\frac{1}{2 \pi} \int d^{2} z(b \bar{\partial} c+\beta \bar{\partial} \gamma) \tag{6}
\end{equation*}
$$

The OPE algebra is

$$
\begin{equation*}
b(z) c(0) \sim \frac{1}{z}, \quad c(z) b(0) \sim \frac{1}{z}, \quad \beta(z) \gamma(0) \sim-\frac{1}{z}, \quad \gamma(z) \beta(0) \sim \frac{1}{z} . \tag{7}
\end{equation*}
$$

Define

$$
\begin{align*}
& T_{\text {ghost }}(z)=(\partial b) c-\lambda \partial(b c)+(\partial \beta) \gamma-\frac{1}{2}(2 \lambda-1) \partial(\beta \gamma) \\
& J_{\text {ghost }}(z)=-\frac{1}{2}(\partial \beta) c+\frac{2 \lambda-1}{2} \partial(\beta c)-2 b \gamma \tag{8}
\end{align*}
$$

1. Compute the conformal weights of b and c, β and γ.
2. Furthermore compute the OPE of $T T$ and determine the central charge.
3. This system of ghosts can be used in the Faddeev-Popov gauge-fixing for $\lambda=2$. Check that for this value the total central charge of $T_{\text {ghost }}$ and $T_{R N S}$ vanishes for $d=10$.
