String Theory II: Assignment 1

(1) Super-Virasoro Algebra

Consider the algebra of oscillators for the RNS-string

$$
\begin{array}{rlrl}
{\left[\alpha_{n}^{\mu}, \alpha_{m}^{\nu}\right]} & =n \eta^{\mu \nu} \delta_{n+m, 0}, & & n, m \in \mathbb{Z} \tag{1}\\
\left\{b_{r}^{\mu}, b_{s}^{\nu}\right\} & =\eta^{\mu \nu} \delta_{r+s, 0}, & r, s \in \mathbb{Z}+\phi,
\end{array}
$$

where $\phi=0, \frac{1}{2}$ for the R, NS-sector. Define the generators of the Super-Virasoro algebra by the normal ordered expressions

$$
\begin{align*}
& L_{n}=\frac{1}{2} \sum_{m \in \mathbb{Z}}: \alpha_{-m} \cdot \alpha_{m+n}:+\sum_{r \in \mathbb{Z}+\phi}(r+n / 2): b_{-r} b_{n+r}: \tag{2}\\
& G_{r}=\sum_{m \in \mathbb{Z}} \alpha_{-m} \cdot b_{r+m}
\end{align*}
$$

for $n \in \mathbb{Z}$ and $r \in \mathbb{Z}+\phi$. Determine the algebra that these operators generate, i.e. compute $\left[L_{m}, L_{n}\right],\left[L_{m}, G_{r}\right]$ and $\left\{G_{r}, G_{r}\right\}$.
(2) Supersymmetry of the RNS-String

Consider the superconformal gauge-fixed RNS-string action

$$
\begin{equation*}
S=S_{B}+S_{F}=\frac{1}{2 \pi} \int d^{2} \sigma\left(\frac{2}{\alpha^{\prime}} \partial_{+} X \cdot \partial_{-} X+i\left(\psi_{+} \cdot \partial_{-} \psi_{+}+\psi_{-} \cdot \partial_{+} \psi_{-}\right)\right) \tag{3}
\end{equation*}
$$

Show that this action is invariant under the global supersymmetry transformations

$$
\begin{align*}
\sqrt{\frac{2}{\alpha^{\prime}}} \delta_{\epsilon} X^{\mu} & =i \bar{\epsilon} \psi^{\mu}=i\left(\epsilon^{+} \psi_{+}^{\mu}+\epsilon^{-} \psi_{-\mu}\right) \\
\delta_{\epsilon} \psi_{+}^{\mu} & =-\sqrt{\frac{2}{\alpha^{\prime}}} \epsilon^{+} \partial_{+} X^{\mu} \tag{4}\\
\delta_{\epsilon} \psi_{-}^{\mu} & =-\sqrt{\frac{2}{\alpha^{\prime}}} \epsilon^{-} \partial_{-} X^{\mu}
\end{align*}
$$

Note: In the notes from lectures 1 and 2 I added a summary page including conventions for spinors in 2d.
(3) Gauge Fixing the RNS-String [Bonus]

The fully covariant, supersymmetric RNS-string is coupled to a world-sheet metric $h^{\alpha \beta}$ and gravitino superpartner χ_{α} (i.e. what would be called a $2 \mathrm{~d} N=1$ supergravity multiplet). Let e_{a}^{α} be the zweibein, satisfying

$$
\begin{equation*}
e_{\alpha}^{a} e_{b}^{\alpha}=\delta_{b}^{a}, \quad e_{a}^{\alpha} e_{b}^{\beta} h_{\alpha \beta}=\eta_{a b} . \tag{5}
\end{equation*}
$$

The action

$$
\begin{align*}
S^{\mathrm{cov}}=S_{B}^{\mathrm{cov}}+S_{F}^{\mathrm{cov}}+S^{\chi}= & -\frac{1}{4 \pi \alpha^{\prime}} \int d^{2} \sigma \sqrt{-h} h^{\alpha \beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu}+i \bar{\psi}^{\mu} \gamma^{\alpha} \partial_{\alpha} \psi_{\mu} \\
& -\frac{i}{8 \pi} \int d^{2} \sigma \sqrt{-h} \bar{\chi}_{\alpha} \gamma^{\beta} \gamma^{\alpha} \psi^{\mu}\left(\sqrt{\frac{2}{\alpha^{\prime}}} \partial_{\beta} X_{\mu}-\frac{i}{4} \bar{\chi}_{\beta} \psi_{\mu}\right) \tag{6}
\end{align*}
$$

is then invariant under the following supersymmetry transformations

$$
\begin{align*}
\sqrt{\frac{2}{\alpha^{\prime}}} \delta_{\epsilon} X^{\mu} & =i \bar{\epsilon} \psi^{\mu} \\
\delta_{\epsilon} \psi^{\mu} & =\frac{1}{2} \gamma^{\alpha}\left(\sqrt{\frac{2}{\alpha^{\prime}}} \partial_{\alpha} X^{\mu}-\frac{i}{2} \bar{\chi}_{\alpha} \psi^{\mu}\right) \epsilon \tag{7}\\
\delta_{\epsilon} e_{\alpha}^{a} & =\frac{i}{2} \bar{\epsilon} \gamma^{a} \chi_{\alpha} \\
\delta_{\epsilon} \chi_{\alpha} & =2 \nabla_{a} \epsilon,
\end{align*}
$$

Weyl transformations

$$
\begin{equation*}
\delta_{\Lambda} X^{\mu}=0, \delta_{\Lambda} e_{\alpha}=\Lambda e_{\alpha}^{a}, \quad \delta \psi^{\mu}=-\frac{1}{2} \Lambda \psi^{\mu}, \quad \delta_{\Lambda} \chi_{\alpha}=\frac{1}{2} \Lambda \chi_{\alpha}, \tag{8}
\end{equation*}
$$

Super-Weyl transformations

$$
\begin{equation*}
\delta_{\eta} \chi_{\alpha}=\gamma_{\alpha} \eta \tag{9}
\end{equation*}
$$

with all others vanishing, 2d Lorentz transformations

$$
\begin{equation*}
\delta_{l} X^{\mu}=0, \quad \delta_{l} \psi^{\mu}=-\frac{1}{2} l \gamma \psi^{\mu}, \quad \delta_{l} e_{\alpha}^{a}=l \varepsilon^{a}{ }_{b} e_{\alpha}^{b}, \quad \delta_{-} \chi_{\alpha}=-\frac{1}{2} l \gamma \chi_{\alpha}, \tag{10}
\end{equation*}
$$

where $\gamma=\gamma^{0} \gamma^{1}$ is the chirality operator, and finally reparametrizations

$$
\begin{align*}
\delta_{\xi} X^{\mu} & =-\xi^{\beta} \partial_{\beta} X^{\mu} \\
\delta_{\xi} \psi^{\mu} & =-\xi^{\beta} \partial_{\beta} \psi^{\mu} \\
\delta_{\xi} e_{\alpha}^{a} & =-\xi^{\beta} \partial_{\beta} e_{\alpha}^{a}-e_{\beta}^{a} \partial_{\alpha} \xi^{\beta} \tag{11}\\
\delta_{\xi} \chi_{\alpha} & =-\xi^{\beta} \partial_{\beta} \chi_{\alpha}-\chi_{\beta} \partial_{\alpha} \xi^{\beta} .
\end{align*}
$$

1. Use the bosonic symmetries (two worldsheet reparametrizations ξ, one Lorentz l and one Weyl scaling Λ) to bring the zweibein into the form

$$
\begin{equation*}
e_{\alpha}^{a}=\delta_{\alpha}^{a} . \tag{12}
\end{equation*}
$$

This analysis is very much like in the bosonic string.
2. Use the two supersymmetries and two superconformal symmetries $\left(\epsilon_{ \pm}\right.$and $\left.\eta_{ \pm}\right)$to gauge fix the gravitino to

$$
\begin{equation*}
\chi_{\alpha}=0 \tag{13}
\end{equation*}
$$

3. Using the equations of motion of e and χ evaluated in the gauged fixing (12) and (13) show that the resulting equations are precisely the Super-Virasoro constraints

$$
\begin{equation*}
T_{ \pm \pm}=J_{ \pm}=0 \tag{14}
\end{equation*}
$$

