QFT in Curved Spacetime
Problems 3

1. By evaluating the integral
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in two different ways, show that the area of the n-sphere, A,,, is given by the expression
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Let G(x,2") denote the Feynman propagator for a massive scalar field. Thus
(01T (p()p(a))|0) = —iG(z,2') and (O —m*)G(z,2') = —¢ /2 d(x,a") .

By making use of the representation
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(notice that this builds in the ie prescription for m?) show that, in Minkowski space,
for the standard vacuum
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where K, denotes the modified Bessel function and

1
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Take the limit m? — 0 to show that, in the massless case,
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2. The Kontorovich-Lebedev transform (see Erdélyi et al. Higher Transcendental Func-
tions vol 11) is classically given by the pair of relations
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Show that these relations are equivalent to the relations
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Show that the modes
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are orthonormal with respect to the inner product
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Expand a scalar field in modes and define a Feynman propagator appropriate to the
modes we have just defined. Show that this Feynman propagator is given by the
expression
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