Problem sheet 2a

1. To provide a model for a collapsing star, consider the k=1 dust FRW universe

$$ds^2 = dT^2 - a(T)^2 (d\psi^2 + \sin^2 \psi d\Omega^2),$$

where $d\Omega^2 = d\theta^2 + \sin^2\theta d\phi^2$ is the round sphere metric, and the Friedmann equations give for dust in terms of cosmological time T

$$\left(\frac{da}{dT}\right)^2 + 1 = \frac{8\pi\rho_0}{3a} \,.$$

Show that it is possible to glue the hypersurface $\psi = \psi_0$ to Schwarzschild

$$ds^{2} = \left(1 - \frac{2m}{r}\right)dt^{2} - \frac{dr^{2}}{\left(1 - \frac{2m}{r}\right)} - r^{2}d\Omega^{2},$$

along a timelike 3-surface (t,r)=(t(T),R(T)) such that the curves $(\theta,\phi)=$ constant are radial time-like geodesics and the metric is continuous.

2. Let \mathcal{H} be a bifurcate Killing horizon associated to Killing vector k_a and let the surface gravity κ be defined by $k^a \nabla_a k_b = \kappa k_b$. Show that $\nabla_a k^b k_b = -2\kappa k_a$. Use the fact that on \mathcal{H} , k_a is hypersurface-orthogonal, i.e., $k_{[a} \nabla_b k_{c]} = 0$, and Killing to show that

$$\kappa^2 = -\frac{1}{2}(\nabla_a k_b)(\nabla^a k^b) \tag{146}$$

Show that if the Killing horizon is bifurcate, then κ is constant. [Hint: κ is constant up the generators, so work on the bifurcation surface where $k_a = 0$. First prove that for any Killing vector $\nabla_a \nabla_b k_c = -R_{bcad} k^d$.]

3. Compute the surface gravity for the Reissner-Nordstrom metric

$$ds^{2} = \frac{\Delta}{r^{2}}dt^{2} - \frac{r^{2}}{\Delta}dr^{2} - r^{2}d\Omega^{2}, \qquad \Delta = (r - r_{+})(r - r_{-}) = r^{2} - 2mr + Q^{2},$$

at the horizon $r = r_{+} > r_{-}$.

[Note that the original coordinates are singular at the horizon, whereas Eddington-Finkelstein coordinates make the horizon smooth with $dv = dt + \frac{r^2 dr}{\Delta}$ and $\partial/\partial t$ is $\partial/\partial v$ in these (v, r, θ, ϕ) coordinates.]

4. Show that if a Killing vector k^a is thought of as a 1-form, $k_a dx^a$, then the 2-form *dk satisfies the identity

$$d^*dk = R_{ab}k^{a*}dx^b. (147)$$

Assuming Einstein's equations, deduce that

$$\nabla^b J_b = 0$$
, $J_a = T_{ab} k^b - \frac{1}{2} T k_a$, $T = T_a^a$.

Evaluate the integral of *dk on a sphere of constant r in Reissner-Nordstrom. Interpret the answer.