
C7.5: General Relativity I

Problem Sheet 2

Please return solutions (collection boxes in the basement of the Mathematical Institute) no

later than Wednesday 1st of November, 1pm.

1. Uniform Acceleration and the Equivalence Principle

Let us start from a global inertial frame O in Minkowski space with coordinates xa = (t, x, y, z).

Now consider the transformation to a non-inertial frame O′ with coordinates x′a = (t′, x′, y′, z′)

such that

t =

(
1

g
+ z′

)
sinh

(
gt′
)

z =

(
1

g
+ z′

)
cosh

(
gt′
)
− 1

g

x = x′

y = y′

where g is a constant with units of acceleration.

1. For t′ � 1/g show that this transformation corresponds to a uniformly accelerated refer-

ence frame in Newtonian mechanics.

2. Plot the trajectory of the point z′ = 0 in the inertial frame O.

3. Show that a clock at rest at z′ = h runs fast compared to a clock at rest at z′ = 0 by the

factor (1 + gh).

4. Use the equivalence principle to interpret this result in terms of gravitational time dilation.

5. What is the line element ds2 of a uniform gravitational field?

2. Flat Space in Polar Coordinates

Flat R2 has coordinates x1 and x2 and a metric with components g11 = g22 = 1 as well as

g12 = g21 = 0. Changing to polar coordinates defined by(
x1

x2

)
=

(
r cosφ

r sinφ

)
.
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1. Find the components of the metric.

2. Find the Christoffel symbols using

(a) the geodesic equation as derived from the point-particle Lagrangian.

(b) the expression of the Christoffel symbols in terms of the metric

Γa
bc =

1

2
gad (∂bgcd + ∂cgbd − ∂dgbc)

(c) the transformation behavior of the Christoffel symbols under a change of coordinates.

3. Show that straight lines in R2 solve the geodesic equation in polar coordinates.

3. The Covariant Derivative

Together with the usual properties of a derivative, the covariant derivative is defined to map

(p, q) tensors to (p, q + 1) tensors. The action of the covariant derivate on a vector (i.e. (1, 0)

tensor) with components va can be written as

∇bv
a = ∂bv

a + Γa
bcv

c .

1. Prove that ∇bv
a transforms as a (1, 1) tensor under general coordinate transformations

provided the Christoffel symbols transform as

Γ
′a
bc =

∂xp

∂x′b

∂xq

∂x′c

(
∂x

′a

∂xr
Γr

pq −
∂2x

′a

∂xp∂xq

)

2. Show that the above transformation behavior is implied by

Γa
bc =

1

2
gad (∂bgcd + ∂cgbd − ∂dgbc)

3. What is the action of the covariant derivative ∇a on a scalar ? Use this to show how ∇a

must act on a one-form ωa.

4. What is the action of the covariant derivative ∇a on a (p, q) tensor ?

4. 2d de Sitter Space

Consider the two-dimensional de Sitter metric

ds2 = −du2 + cosh2 u dϕ2

where ∞− < u <∞ and 0 ≤ ϕ ≤ 2π.

1. What is the proper length of the space-like curve defined by u = uc?

2



2. Write down the lagrangian for (affinely parametrized) geodesics and, using Lagrange’s

equations, compute the non-vanishing Christoffel symbols:

Γu
ϕϕ Γϕ

uϕ Γϕ
ϕu .

3. Show that

J = cosh2 u ϕ̇ E = u̇2 − cosh2 u ϕ̇2

are both conserved along geodesics. Hint: for an elegant derivation of the second conserved

quantity, you may want to compute the hamiltonian and explain why it is conserved.

4. Consider a geodesic with initial condition ϕ̇(0) = 0. Show that J = 0 and E = u̇2.

5. Now consider the case J 6= 0. Introduce the variable v = tanhu and show that(
dv

dϕ

)2

=

(
E

J2
+ 1

)
− v2 .

Write down the most general solution v(ϕ) and discuss its behaviour as a function of the

ratio E/J2.

5. Infinitesimal Symmetries

The Lie derivative of a type (2, 0) tensor Tab with respect to a vector field Xa is defined by

LXTab = Xc∂cTab + (∂aX
c)Tcb + (∂bX

c)Tac .

1. Show that you can replace ∂a with any covariant derivative ∇a in this expression and so

argue that the Lie derivative transforms as a tensor.

2. Consider the infinitesimal coordinate transformation δxa = εKa generated by a vector

field Ka. Show that the action of an (affinely parametrized) geodesic

S =

∫ s2

s1

gab(x(s))
dxa

ds

dxb

ds

is invariant under this transformation if

LKgab = 0 .

Show that this can be equivalently expressed as

∇(aKb) = 0

where ∇a is the covariant derivative associated to the metric gab. A vector field with this

property is known as a ‘Killing vector’ and generates an infinitesimal symmetry of the

geometry defined by the metric gab.
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3. Show that the inner product gabK
aẋb is conserved along the geodesic.

4. Consider the two-dimensional de Sitter metric from problem 4. Show that the vector

field Ka with components Ku = 0 and Kϕ = 1 is a Killing vector and the corresponding

conserved quantity is J .

5* Show that the sum Xa+Y a and commutator [X,Y ]a = Xb∇bY
a−Y b∇bX

a of two Killing

vectors are also Killing vectors. Together with the Jacobi identity, this means that Killing

vectors generate a Lie algebra.

6.* Maxwell Equations in General Coordinates

In a general spacetime, the sourceless Maxwell equations are given by

∇aF
ab = 0, ∇aFbc +∇bFca +∇cFab = 0

where Fab = −Fba. The Maxwell energy-momentum tensor is as

Tab =
1

4π

(
FacF

c
b +

1

4
F cdFcdgab

)
.

1. Show that

∇aTab = 0.

2. Show that Γb
ab = ∂a log

√
−|g|, where |g| is the determinant of the metric.

3. Show that the first Maxwell equation can be written as

∂a

(√
|g|F ab

)
= 0.

4. Show that we can substitute covariant derivatives by partial derivatives in the second

Maxwell equation.
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