C7.5: General Relativity I
 Problem Sheet 1

Please return solutions (collection boxes in the basement of the mathematical institute) no later than 17 th of October, 1 pm .

1. Practice with Tensors

Imagine we have a tensor $X^{a b}$ and a vector V^{a} with components

$$
X^{a b}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), \quad V^{a}=(-1,2,0,-2)
$$

Find $X_{b}^{a}, X_{a}{ }^{b}, X^{(a b)}, X_{[a b]}, X_{\lambda}^{\lambda}, V^{a} V_{a}, V_{a} X^{a b}$, using $\eta_{a b}=\operatorname{diag}(-1,1,1,1)$.

2. Summation Convention

Explain why each equation below is ambiguous or inconsistent. Provide a possible correct version of each one.

1. $x^{\prime a}=L^{a b} x^{b}$
2. $x^{\prime a}=L^{b}{ }_{c} M^{c}{ }_{d} x^{d}$
3. $\delta_{b}^{a}=\delta_{c}^{a} \delta_{d}^{c}$
4. $x^{\prime a}=L^{a}{ }_{c} x^{c}+M^{c}{ }_{d} x^{d}$
5. $x^{\prime a}=L^{a}{ }_{c} x^{c}+M^{a d} x^{d}$
6. $\phi=\left(X^{a} A_{a}\right)\left(Y^{a} B_{a}\right)$

3. Operations on Tensors

Consider two general coordinate systems $\left\{x^{a}\right\}$ and $\left\{x^{\prime a}\right\}$ on overlapping regions of flat Minkowski spacetime. How do the components of a (p, q) tensor transform under the change of coordinates from $\left\{x^{a}\right\} \rightarrow\left\{x^{\prime a}\right\}$?

What form form does the Jacobian matrix $\delta x^{\prime a} / \delta x^{b}$ take for a Lorentz transformation between two inertial frames?

- Show that the sum $S^{a}{ }_{b}+T^{a}{ }_{b}$ of two $(1,1)$ tensors is also a $(1,1)$ tensor.
- Show that the tensor product $S^{a}{ }_{b} T^{c}$ of a $(1,1)$ tensor and an $(1,0)$ tensor is a $(2,1)$ tensor.
- Show that the contraction $S^{a c}{ }_{b c}$ of a $(2,2)$ tensor is a $(1,1)$ tensor.
- Show that the partial derivatives $\partial_{a} S^{b}$ of a $(1,0)$ tensor transforms under as a $(1,1)$ tensor under Lorentz transformations between inertial frames but not under general coordinate transformations.

4. Levi-Civita tensor

For any tensor $T^{a_{1}, \cdots, a_{q}}$, we may define its symmetrization

$$
T^{\left(a_{1}, \cdots, a_{q}\right)} \equiv \sum_{\sigma \in \mathcal{S}_{q}} T^{a_{\sigma(1)}, \cdots, a_{\sigma(q)}}
$$

and anti-symmetrization

$$
T^{\left[a_{1}, \cdots, a_{q}\right]} \equiv \sum_{\sigma \in \mathcal{S}_{q}} \operatorname{sig}(\sigma) T^{a_{\sigma(1)}, \cdots, a_{\sigma(q)}}
$$

Here \mathcal{S}_{q} is the group of permutations $\{\sigma\}$ of q elements and $\operatorname{sig}(\sigma)$ denotes the sign of a permutation σ.

Prove that a completely anti-symmetric $(0, m)$ tensor in n dimensions vanishes unless $m \leq n$. How many independent components does such a tensor have?

In a four dimensional spacetime with metric $g_{a b}$, the Levi-Civita tensor $\epsilon_{a b c d}$ is defined by two properties:

1. It is completely anti-symmetric: $\epsilon_{a b c d}=\epsilon_{[a b c c]}$.
2. $\epsilon_{0123}=\sqrt{-g}$ in a right-handed coordinate system $\left\{x^{0}, x^{1}, x^{2}, x^{3}\right\}$ where g is the determinant of the metric.

Show that $\epsilon_{0123}=1$ in a right-handed inertial frame. Prove that $\epsilon_{a b c d}$ transforms as a $(0,4)$ tensor under general coordinate transformations

$$
x \rightarrow x^{\prime}(x) .
$$

5. Maxwell's Equations in an Inertial Frame

Show that

$$
\partial_{[a} F_{b c]}=0 \quad \Leftrightarrow \quad \partial_{a} F_{b c}+\partial_{b} F_{c a}+\partial_{c} F_{a b}=0
$$

whenever $F_{a b}=-F_{b a}$.
The electromagnetic field is encoded in an anti-symmetric type (0,2) tensor field, $F_{a b}$. The electric and magnetic fields measured by an observer with 4-velocity V^{a} are extracted from $F_{a b}$ by

$$
E_{a}=F_{a b} V^{b} \quad B_{a}=-\frac{1}{2} \epsilon_{a b c d} F^{b c} V^{d} .
$$

where $\epsilon_{a b c d}$ is the Levi-Civita tensor. By contracting with the 4 -velocity V^{a}, explain why E_{a} and B_{a} each have only 3 independent components. For an observer at rest in an inertial frame, $V^{a}=(1,0,0,0)$, show that

$$
\begin{aligned}
E_{a} & =(0, \vec{E}) & \text { where } & E_{i}=F_{i 0} \\
\text { and } & B_{a} & =(0, \vec{B}) & \text { where }
\end{aligned} \quad B_{i}=\frac{1}{2} \epsilon_{i j k} F^{j k} .
$$

Hence show that

$$
\partial_{a} F^{a b}=-4 \pi J^{b} \quad \partial_{[a} F_{b c]}=0
$$

reproduce Maxwell's equations for the electromagnetic fields (\vec{E}, \vec{B}). The vector field J^{a} has components (ρ, \vec{J}) where ρ is the electric charge density and \vec{J} is the electric current density measured by an observer at rest in the inertial frame. Show that $\partial_{a} J^{a}=0$ and explain the physical meaning of this equation.

The contribution to the energy-momentum tensor from the electromagnetic field is

$$
T^{a b}=\frac{1}{4 \pi}\left[F^{a c} F^{b}{ }_{c}-\frac{1}{4}\left(F^{c d} F_{c d}\right) \eta^{a b}\right]
$$

Assuming $J^{a}=0$, show that this energy momentum tensor is conserved $\partial_{a} T^{a b}=0$. What happens when $J^{a} \neq 0$?

6. Geodescics and Motion in an EM field

Consider a curve $x^{a}(s)$ in flat Minkowski space parametrized by a real parameter $s_{1} \leq s \leq s_{2}$. What is the condition for this curve to be time-like?

The proper time of a time-like curve is the time experienced by an observer moving along it. In an inertial reference frame, this is given by the functional

$$
\Delta \tau=\int_{s_{1}}^{s_{2}} d s \sqrt{-\eta_{a b} \frac{d x^{a}}{d s} \frac{d x^{b}}{d s}}
$$

where $\eta_{a b}=\operatorname{diag}(-1,1,1,1)$. Consider the variational problem for this functional and show that the curve of extremal proper time between two points $x^{a}\left(s_{1}\right)$ and $x^{a}\left(s_{2}\right)$ is a straight line. Is this a minimum or a maximum?

Show that one may always reparametrize the curve such that $\sqrt{-\eta_{a b} \dot{x}^{a} \dot{x}^{b}}$ is constant. What is the parametrization which achieves this? Such a parameter is called an affine parameter.

Why is extremizing the functional

$$
S=-\frac{1}{2} \int_{s_{1}}^{s_{2}} \eta_{a b} \frac{d x^{a}}{d s} \frac{d x^{b}}{d s}
$$

equivalent to extremizing the proper time when using an affine parameter? What is left of the reparametrization freedom $s \rightarrow s^{\prime}(s)$ when working with this action, i.e. what are the relations between choices of affine parameters ?

Now consider the modified functional

$$
S=-\int_{s_{1}}^{s_{2}}\left[\frac{m}{2} \eta_{a b} \frac{d x^{a}}{d s} \frac{d x^{b}}{d s}-q A_{a} \frac{d x^{a}}{d s}\right] .
$$

Show that the solution of the variational problem is

$$
\frac{d^{2} x^{a}}{d s^{2}}=\frac{q}{m} F^{a}{ }_{b} \frac{d x^{b}}{d s} \quad \text { with } \quad F_{a b}=\partial_{a} A_{b}-\partial_{b} A_{a}
$$

This equation describes the motion of a particle of mass m and electric charge q in an electromagnetic field $F_{a b}$. Contract the equation of motion with \dot{x}^{a} and therefore show that $\sqrt{-\eta_{a b} \dot{x}^{a} \dot{x}^{b}}$ remains constant in the presence of an electromagnetic field.

7. Energy momentum tensor of a perfect fluid

Consider some distribution of matter with energy momentum tensor $T^{a b}$. What is the 4 momentum per-unit-volume and directional pressure measured by an observer with 4 -velocity V^{a} ?

The energy momentum tensor of a perfect fluid is given by

$$
T^{a b}=(\rho+P) U^{a} U^{b}+P \eta^{a b}
$$

where $\eta^{a b}$ is the inverse metric in Minkowski space and U^{a} is the 4 -velocity of the fluid. By considering an observer at rest with respect to the motion of the fluid, explain the physical meaning of ρ and P.

The equation of motion of a perfect fluid in an inertial frame is

$$
\partial_{a} T^{a b}=0
$$

In the remainder of the question you will show how the equations of fluid mechanics are compactly encoded in this single expression.

First show that the tensor

$$
h^{a}{ }_{b}=\delta^{a}{ }_{b}+U^{a} U_{b}
$$

obeys

1. $h^{a}{ }_{b} U^{b}=0$
2. $h^{a}{ }_{b} h^{b}{ }_{c}=h^{a}{ }_{c}$
3. $\quad h^{a}{ }_{a}=3$
and therefore explain why $h^{a}{ }_{b}$ is a projector onto the 3-dimensional hypersurfaces perpendicular to the fluid's 4 -velocity U^{a}. What is the meaning of the symmetric tensor $h_{a b}=\eta_{a c} h^{c}{ }_{b}$?

By projecting the equation of motion parallel and perpendicular to the 4 -velocity of the fluid U^{a}, derive the equations

$$
\begin{equation*}
\partial_{a}\left(\rho U^{a}\right)+P \partial_{a} U^{a}=0 \quad(\rho+P) \frac{d U^{a}}{d \tau}+h^{a b} \partial_{b} P=0 \tag{1}
\end{equation*}
$$

where τ is the proper time of a particle moving with the fluid. The equations are the relativistic versions of the continuity and Euler equations of fluid mechanics. Show that the fluid particles move along geodesics when $P=0$.

We now consider the non-relativistic approximation to equations (11). In the non-relativistic approximation you will need to assume that

1. $U^{a}=(1, \vec{u}) \quad|\vec{u}| \ll 1$
2. $P \ll \rho$
3. $|\vec{u}| \partial_{t} P \ll|\vec{\nabla} P|$.

What is the physical intuition behind each of the approximations? (It may be helpful to restore the speed of light c in the equations.) Using the approximation, show that

$$
\partial_{t} \rho+\vec{\nabla} \cdot(\rho \vec{u})=0 \quad \rho\left(\partial_{t}+\vec{u} \cdot \vec{\nabla}\right) \vec{u}=-\vec{\nabla} P .
$$

