Problem Sheet 3, General Relativity 2, HT 2018

1. Let K^{a} be the null vector with components $(1,0,0,1)$, and let $e_{a b}$ such that

$$
\left(e_{a b}-\frac{1}{2} \eta_{a b} e\right) K^{b}=0
$$

where $e=\eta^{a b} e_{a b}$ (as in the lectures for chapter 2). Show that a 4-vector λ^{a} can be found so that $\tilde{e}_{a b}=e_{a b}+K_{a} \lambda_{b}+\lambda_{a} K_{b}$ is given by

$$
\tilde{e}_{a b}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & A & B & 0 \\
0 & B & -A & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

[Hint: first show that λ^{a} can be chosen to make $\tilde{e}_{0 a}=0$, then deduce that \tilde{e} must vanish, etc....]
2. A massive particle crosses $r=2 M$ in the Schwarzschild metric following some ingoing radial time-like path. Show that it arrives at $r=0$ after an elapsed proper time Δs which can be no greater that πM.
[As a first step, what class of paths maximise proper time?].
3. Reproduce the figure in Section 3.3 (lecture 12) for the Kruskal-Szekeres spacetime. Show a radial space-like geodesic with $E=0$, and a radial time-like geodesic with $E<1$. What does this condition tell you about \dot{r}, and therefore r ? Where on this figure are there radial time-like geodesics with $E=0$?
4. How to recognize a null hypersurface: A null hypersurface is a surface Σ with normal n^{μ} which is null. In some space-time, the scalar function S has the property that $S=0$ is a null hypersurface. S is used as a coordinate, $S=x^{0}$, in a coordinate system $\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$. Show that the component g^{00} of the contravariant metric vanishes at $S=0$. Decompose the covariant metric into blocks as

$$
g_{a b}=\left(\begin{array}{cc}
V & \mathbf{Y}^{t} \\
\mathbf{Y} & A
\end{array}\right)
$$

where A is a (symmetric) 3×3 matrix, \mathbf{Y} a 3 component column vector and V a function.
Show that $\operatorname{det} A=0$ at $S=0$.
[So this is one (quick) way to recognize a null hypersurface. For the proof consider the identity $g^{a c} g_{c b}=\delta_{b}^{a}$.]
For the Schwarzschild metric, use this to show that the surface $S=r-2 M=0$ is null in the Eddington- Finkelstein metrics.
5. Static versus Stationary: A space-time with a time-like Killing vector K^{a} is said to be static is K^{a} is hypersurface-orthogonal (recall that this means $K_{[a} \nabla_{b} K_{c]}=0$) and stationary otherwise. The Kerr metric in the Boyer-Lindquist coordinates is

$$
\begin{aligned}
\mathrm{d} s^{2}=- & \left(1-\frac{2 M r}{\Sigma}\right) \mathrm{d} t^{2}-\frac{4 M a r}{\Sigma} \sin ^{2} \theta \mathrm{~d} \phi \mathrm{~d} t \\
& +\frac{1}{\Sigma} \sin ^{2} \theta\left(\Delta \Sigma+2 M r\left(r^{2}+a^{2}\right)\right) \mathrm{d} \phi^{2}+\Sigma\left(\frac{1}{\Delta} \mathrm{~d} r^{2}+\mathrm{d} \theta^{2}\right)
\end{aligned}
$$

where $\Sigma=r^{2}+a^{2} \cos ^{2} \theta$ and $\Delta=r^{2}-2 M r+a^{2}$. Show that this metric is not static unless $J=M a=0$ (when of course it reduces to the Schwarzschild metric).
6. Show that a vector field \mathbf{K} in flat 3-space is hypersurface orthogonal (HSO) if and only if

$$
\mathbf{K} \cdot \nabla \wedge \mathbf{K}=0
$$

If $\mathbf{K}=(y,-x, f(r))$ where $r^{2}=x^{2}+y^{2}$, for what f is \mathbf{K} HSO? What do the integral curves (equivalently 'streamlines') of \mathbf{K} look like?

If $\mathbf{K}=(\cos g(z), \sin g(z), 0)$ where $g^{\prime} \neq 0$, show that \mathbf{K} is never HSO and that the integral curves of \mathbf{K} are straight lines.
7. The Kerr metric in Kerr-Eddington coordinates is

$$
\begin{aligned}
\mathrm{d} s^{2}=- & \mathrm{d} T^{2}+\mathrm{d} r^{2}-2 a \sin ^{2} \theta \mathrm{~d} r \mathrm{~d} \Phi+\Sigma \mathrm{d} \theta^{2}+\left(r^{2}+a^{2}\right) \sin ^{2} \theta \mathrm{~d} \Phi^{2} \\
& +\frac{2 M r}{\Sigma}\left(\mathrm{~d} T-a \sin ^{2} \theta \mathrm{~d} \Phi+\mathrm{d} r\right)^{2}
\end{aligned}
$$

where T and Φ are defined by the equations

$$
\mathrm{d} T=\mathrm{d} t+\frac{2 M r}{\Delta} \mathrm{~d} r, \quad \mathrm{~d} \Phi=\mathrm{d} \phi+\frac{a}{\Delta} \mathrm{~d} r,
$$

and

$$
\Delta=r^{2}-2 M r+a^{2}, \quad \Sigma=r^{2}+a^{2} \cos ^{2} \theta
$$

Use the method in question 4 with this metric to show that $r=r_{+}$and $r=r_{-}$are null hypersurfaces in the Kerr metric (recall that $r_{ \pm}$are the values of r for which $\Delta=0)$.

