Problem sheet 1, General Relativity 2, HT 2018.

(Problems which are marked as "revision" will not be discussed in classes.)

1. Use the Bianchi identity $\nabla_{[a} R_{b c] d e}=0$ to prove the contracted Bianchi identity

$$
\nabla^{a}\left(R_{a b}-\frac{1}{2} R g_{a b}\right)=0
$$

2. (revision) Use the definition of the commutator or Lie Bracket of vector fields to prove the Jacobi identity, that for smooth vector fields X, Y, and Z

$$
[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0
$$

3. Show that for a torsion free connection

$$
[X, Y]^{a}=X^{b} \nabla_{b} Y^{a}-Y^{b} \nabla_{b} X^{a}
$$

for any two smooth vectors X and Y.
For any smooth vector field X define the operator $\nabla_{X}=X^{a} \nabla_{a}$. Show that for smooth vector fields X, Y, and Z,

$$
\left(\nabla_{[X, Y]}-\nabla_{X} \nabla_{Y}+\nabla_{Y} \nabla_{X}\right) Z^{a}=R_{b c d}^{a} X^{b} Y^{c} Z^{d}
$$

(This is often used as a definition of curvature.)
4. Given smooth vector fields X and Y, define the operator D by

$$
D=\mathcal{L}_{X} \mathcal{L}_{Y}-\mathcal{L}_{Y} \mathcal{L}_{X}-\mathcal{L}_{[X, Y]} .
$$

Show that D satisfies the Leibnitz property, i.e., that

$$
D\left(S^{\cdots} \ldots T^{\cdots} \ldots\right)=\left(D S^{\cdots} \ldots\right) T^{\cdots} \ldots+S^{\cdots} \ldots D T^{\cdots} \ldots,
$$

for tensor fields $S^{\cdots} \ldots$ and $T^{\cdots} \ldots$ (where we have suppressed the indices).
Show that for any smooth function $f, D f=0$, and use problem 2 above to show that, for any smooth vector field $Z^{a}, D Z^{a}=0$.

Deduce that $D \equiv 0$ for any X and Y. (There is no curvature for Lie derivatives.)
5. Show that for any smooth vector field X^{a} and any tensor $R_{a b c d}$ (not necessarily the Riemann tensor):

$$
\mathcal{L}_{X} R_{a b c d}=X^{e} \nabla_{e} R_{a b c d}+R_{e b c d} \nabla_{a} X^{e}+R_{a e c d} \nabla_{b} X^{e}+R_{a b e d} \nabla_{c} X^{e}+R_{a b c e} \nabla_{d} X^{e} .
$$

If X^{a} is a Killing vector and $R_{a b c d}$ is the Riemann tensor, you might expect the above quantity to vanish. Can you prove this starting from the equation

$$
\nabla_{a} \nabla_{b} X_{c}=-R_{b c a d} X^{d} ?
$$

(Recall that this identity is valid for any Killing vector X^{a}.) [Hint: consider $\left[\nabla_{a}, \nabla_{b}\right] \nabla_{c} X_{d}$.]
6. Use the equation

$$
\nabla_{a} \nabla_{b} X_{c}=-R_{b c a d} X^{d}
$$

from the lectures to show that the maximum number of linearly independent Killing vector fields in a space of dimension n is $n(n+1) / 2$.
[Hint: show that X_{a} and $\nabla_{a} X_{b}$ can be chosen freely at a point and then X is determined as a vector field; then how many choices does this represent?]

If a space has the maximum possible number of Killing vectors, what does problem 5 tell you about $\nabla_{a} R_{b c d e}$?

And what about $R_{a b c d}$? [this part is hard; try taking the trace]
In flat 4-dimensional Minkowski space, find explicit expressions in terms of the pseudo-Cartesian coordinates x^{a} and constant tensors for a 10-parameter family of Killing vectors [what does $\nabla_{a} \nabla_{b} X_{c}=$ $-R_{b c a d} X^{d}$ tell in this case?].

Can you classify these Killing vectors into translations, rotations and 'standard Lorentz transformations'?
7. Consider the following three Killing vectors in flat space, given in Cartesian coordinates:

$$
I=z \partial_{y}-y \partial_{z} ; \quad J=x \partial_{z}-z \partial_{x} ; \quad K=y \partial_{x}-x \partial_{y}
$$

What do these correspond to geometrically? (i.e., translations? rotations? if so, what axis?)
Calculate the three possible non-trivial comutators (i.e., $[I, J]$ etc).

